

Finanziato dall'Unione europea NextGenerationEU

Progetto

OFFICINA GIOVANI - RECUPERO PICCOLO CAPANNONE ARTIGIANALE FRONTE PIAZZA DEI MACELLI 4_OPERE DI RECUPERO

CUP

C33D21002860005

Titolo

Relazione ex. L.10/91 Impianti meccanici

Fase

Progetto Esecutivo

Servizio Servizio Edilizia storico monumentale e immobili comunali, Politiche

energetiche e Datore di Lavoro

Dirigente del servizio Arch. Francesco Caporaso

Responsabile Unico del Procedimento Arch. Antonio Silvestri

Progettisti delle opere architettoniche

Arch. Antonio Silvestri - Comune di Prato

Arch. Elena Vitali - Comune di Prato

Progettista delle opere strutturali

Ing. Francesco Sanzo - Comune di Prato

Coordinatore alla sicurezza in fase di progettazione

Arch. Luca Erbaggio

Progettista delle opere meccaniche, diagnosi energetica e valutazioni acustiche

Ing. Roberto Ferrara

Progettista delle opere elettriche e prevenzione incendi

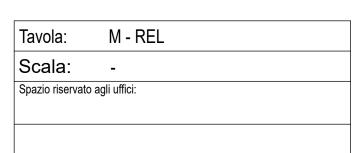
Studio Greenhaus - PI Gian Luca Sani

Legenda codici

A - opere architettoniche

E - impianti elettrici

De - diagnosi energetica


M - impianti meccanici

S - opere strutturali

Ai - prevenzione incendi

Ac - valutazioni acustiche

Sic - sicurezza

[©] Copyright Comune di Prato - Servizio Edilizia storico monumentale ed immobili comunali, Politiche energetiche e Datore di Lavoro è vietata la riproduzione anche parziale del documento

LEGGE 9 gennaio 1991, n. 10 RELAZIONE TECNICA Decreto 26 giugno 2015

COMMITTENTE : Comune di Prato

EDIFICIO : Blocco Ex. Capannone Artigianale

INDIRIZZO : Piazza dei Macelli 4

COMUNE : Prato

INTERVENTO : Ristrutturazione impianto termico per la climatizzazione invernale

ed estiva, isolamento termico del solaio al piano terra e

sostituzione degli infissi.

ING. FERRARA ROBERTO VIA SAN CRESCI, 85 - 50013 CAMPI BISENZIO (FI)

ALLEGATO 2

RELAZIONE TECNICA DI CUI AL COMMA 1 DELL'ARTICOLO 8 DEL DECRETO LEGISLATIVO 19 AGOSTO 2005, N. 192, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI

Riqualificazione energetica e ristrutturazioni importanti di secondo livello Costruzioni esistenti con riqualificazione dell'involucro edilizio e di impianti termici

Un edificio esistente è sottoposto a riqualificazione energetica quando i lavori, in qualunque modo denominati, a titolo indicativo e non esaustivo: manutenzione ordinaria o straordinaria, ristrutturazione e risanamento conservativo, ricadono nelle tipologie indicate al paragrafo 1.4.2 dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, ed insistono su elementi edilizi facenti parte dell'involucro edilizio che racchiude il volume condizionato e/o impianti aventi proprio consumo energetico.

1. INFORMAZIONI GENERALI							
Comune di Prato		Provincia	PO				
Progetto per la realizzazione di (specificare il tipo di opere): Ristrutturazione impianto termico per la climatizzazione invernale ed estiva, isolamento							
termico del solaio al piano terra e sosti	tuzione degli infissi.						
[X] L'edificio (o il complesso di edifici) rientra tra quelli di proprietà pubblica o adibiti ad uso pubblico a fini dell'articolo 5, comma 15, del decreto del Presidente della Repubblica 26 agosto 1993, n. 41 (utilizzo delle fonti rinnovabili di energia) e dell'allegato I, comma 14 del decreto legislativo.							
Sito in (specificare l'ubicazione o, in alterna gli estremi del censimento al Nuovo Catasto		terreno in cui s	si riportano				
Piazza dei Macelli 4							
Richiesta permesso di costruire	del						
Permesso di costruire/DIA/SCIA/CIL o CIA		del					
Variante permesso di costruire/DIA/SCIA/C	IL o CIA	del					
Classificazione dell'edificio (o del complesso del Presidente della Repubblica 26 agosto categorie differenti, specificare le diverse ca E.2 Edifici adibiti a uffici e assimilab	1993, n. 412; per edifici costitui ategorie):						
Numero delle unità abitative	_						
Committente (i) Comune di prato							
Progettista dell'isolamento termico Ingegnere Ferrara Roberto							
	Albo: <i>Ingegneri</i> Pr.: <i>Prato</i> N.is	scr.: b74					
Progettista degli impianti termici							
	Ingegnere Ferrara Roberto						
	Albo: <i>Ingegneri</i> Pr.: <i>Prato</i> N.is	scr.: b74					

2. FATTORI TIPOLOGICI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI)

Gli elementi tipologici forniti, al solo scopo di supportare la presente relazione tecnica, sono i seguenti:

- [X] Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali.
- [] Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare.
- [] Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari.

3. PARAMETRI CLIMATICI DELLA LOCALITÀ

Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93)

1668 GG

Temperatura esterna minima di progetto (secondo UNI 5364 e successivi aggiornamenti)

0,0 °C

Temperatura massima estiva di progetto dell'aria esterna secondo norma

32,5 °C

4. DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

a) Condizionamento invernale

Descrizione	V [m³]	S [m²]	S/V [1/m]	Su [m²]	θ _{int} [°C]	Φ _{int} [%]
Zona climatizzata	729,23	532,95	0,73	104,36	20,0	65,0
Blocco Ex. Capannone Artigianale	729,23	532,95	0,73	104,36	20,0	65,0

Presenza sistema di contabilizzazione del calore:

[]

b) Condizionamento estivo

Descrizione	V [m³]	S [m²]	S/V [1/m]	Su [m²]	θ _{int} [°C]	φ _{int} [%]
Zona climatizzata	712,35	507,98	-	101,65	26,0	51,3
Blocco Ex. Capannone Artigianale	712,35	507,98	-	101,65	26,0	51,3

Presenza sistema di contabilizzazione del calore:

[]

- V Volume delle parti di edificio abitabili o agibili al lordo delle strutture che li delimitano
- S Superficie esterna che delimita il volume
- S/V Rapporto di forma dell'edificio
- Su Superficie utile dell'edificio
- θint Valore di progetto della temperatura interna
- φint Valore di progetto dell'umidità relativa interna

c) Informazioni generali e prescrizioni

Adozione di materiali ad elevata riflettanza s		[]				
Valore di riflettanza solare	0,00	>0,65 per cop	erture piane			
Valore di riflettanza solare	0,00	>0,30 per cop	erture a falda			
Motivazione che hanno portato al non utilizz						
Copertura non oggetto di intervento						
Adozione di tecnologie di climatizzazione pa	ssiva per le coperture:		[]			
Motivazione che hanno portato al non utilizz	0:					
Copertura non oggetto di intervento						
Valutazione sull'efficacia dei sistemi scher presenti:	Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esterni che interni presenti:					
Sono previsti sistemi di schermatura interni (tendaggi) al fine di ridurre il fattore di trasmissione solare totale						
Adozione di valvole termostatiche o altro si ambiente o singola unità immobiliare	[]					
Descrizione delle principali caratteristiche:						
Sonda temperatura su unità interna						
Adozione sistemi di termoregolazione con co automatica della temperatura ambiente sin da impianti centralizzati di climatizzazione in	[]					
Motivazioni che ha portato alla non utilizzazi	ione:					
Non previste						

DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

a) Descrizione impianto

Tipologia

Impianto termico autonomo per riscaldamento e raffrescamento ambienti e produzione di acqua calda sanitaria

Sistemi di generazione

Pompa di calore aria-aria della tipologia a volume di refrigerante variabile per la climatizzazione invernale/estiva. Scaldaacqua in pompa di calore per la produzione di acqua calda sanitaria. Scaldasalviette elettrico nel bagno disabili.

Sistemi di termoregolazione

Sonda temperatura aria ambiente

Sistemi di contabilizzazione dell'energia termica

Non previsto in quanto impianto autonomo

Sistemi di distribuzione del vettore termico

Riscaldamento/raffrescamento: Tubazioni rame-frigorifero

Acqua calda sanitaria: Tubazioni multistrato

Sistemi di ventilazione forzata: tipologie

Ventilazione forzata bagni ciechi (estrazione)

Sistemi di ventilazione decentralizzata (VMC puntuali) nei locali sala principale e Ufficio

Sistemi di accumulo termico: tipologie

Non previsto

Servizio

Sistemi di produzione e di distribuzione dell'acqua calda sanitaria

Scaldaacqua in Pompa di calore con serbatoio di accumulo integrato (80L).

Trattamento di condizionamento chimico per l'acqua, norma UNI 8065: [**X**]

Presenza di un filtro di sicurezza: [**X**]

b) Specifiche dei generatori di energia

> Installazione di un contatore del volume di acqua calda sanitaria: [**X**]

Installazione di un contatore del volume di acqua di reintegro dell'impianto: []

7ona Zona climatizzata Quantità 1 Riscaldamento

Tipo di generatore Pompa di calore Combustibile Energia elettrica

Marca - modello HITACHI - RAS-8FSXNSE o equivalente

Tipo sorgente fredda Aria esterna

Aria

Fluido termovettore

c)

stazione (COP)			25,0	kW		
			4,75			
erimento:						
7,0	°C	Sor	gente calda		20,0	°C
				-		
limatizzata			Quantità		_1	
Scaldasalviet	te elettric	0	Combustib	ile	Energia	elettrica
<u> </u>						
naie Pn	1,93 KW					
limatizzata			Quantità		1	
calda sanitaria			Fluido tern	novettore	Acqua	
Pompa di calo	re		Combustib	ile	Energia	elettrica
	NUOS EV	O A+	80 L o eq	uivalent		
da Aria estern	a					
tile in riscaldament	.0		1.2	kW		
	•					
-		•				
	°C	Sor	gente calda		53.0	°C
- / -	_		J		/-	
limatizzata			Quantità		1	
scamento			-	novettore	Aria	
Pompa di calo	re		Combustib	ile	Energia	elettrica
HITACHI -	RAS-8FSX	NSE c	equivalen	te		
da Aria						
tile in raffrescamer	ıto		22,4	kW		
energetica (EER)		•	4,15			
erimento:		•				
	Imatizzata calda sanitaria Pompa di calda ARISTON - da Aria esterna tile in riscaldamento stazione (COP) erimento: 7,0 Ilimatizzata scamento Pompa di calda HITACHI - Il da Aria tile in raffrescament	Imatizzata caldasalviette elettric nale Pn 0,93 kW Ilimatizzata calda sanitaria Pompa di calore ARISTON - NUOS EVO da Aria esterna tile in riscaldamento stazione (COP) erimento: 7,0 °C Ilimatizzata scamento Pompa di calore HITACHI - RAS-8FSX da Aria tile in raffrescamento	Imatizzata caldasalviette elettrico nale Pn 0,93 kW Ilimatizzata calda sanitaria Pompa di calore ARISTON - NUOS EVO A+ da Aria esterna tile in riscaldamento stazione (COP) erimento: 7,0 °C Sor Ilimatizzata scamento Pompa di calore HITACHI - RAS-8FSXNSE of da Aria tile in raffrescamento	Fluido term Scaldasalviette elettrico Combustib Alimatizzata Calda sanitaria Pompa di calore ARISTON - NUOS EVO A+ da Aria esterna tile in riscaldamento stazione (COP) erimento: 7,0 °C Sorgente calda Alimatizzata Quantità Fluido term Combustib ARISTON - SORGENTE CALDA Combustib ARISTON - SORGENTE CALDA Combustib Combustib ARISTON - NUOS EVO A+ ARISTON - NUOS EVO A+ BOL O equantità Combustib Combustib ARISTON - NUOS EVO A+ ARISTON - NUOS EVO A+ BOL O equantità Combustib ARISTON - NUOS EVO A+ BOL O equantità Combustib ARISTON - NUOS EVO A+ ARISTON - NUOS EVO A+ BOL O equantità Combustib ARISTON - NUOS EVO A+ BOL O equantità	Fluido termovettore Scaldasalviette elettrico Combustibile Pompa di calore ARISTON - NUOS EVO A+ da Aria esterna tile in riscaldamento stazione (COP) erimento: 7,0 °C Sorgente calda Climatizzata Quantità Fluido termovettore Combustibile kW 2,60 erimento: 7,0 °C Sorgente calda Climatizzata Quantità Fluido termovettore Combustibile Fluido termovettore Combustibile HITACHI - RAS-8FSXNSE o equivalente da Aria tile in raffrescamento 22,4 kW	Ilimatizzata Calda sanitaria Pompa di calore da Aria esterna tile in riscaldamento: 7,0 Combustibile Pompa di calore The combustibile Aria esterna Combustibile Aria Combustibile Aria Combustibile Energia Aria Combustibile Aria Combustibile Energia Aria Combustibile Energia Aria Combustibile Energia Combustibile Energia Aria Combustibile Energia Aria Combustibile Energia Aria Combustibile Energia

Regolatori climatici delle singole zone o unità immobiliari

Descrizione sintetica delle funzioni	Numero di apparecchi	Numero di livelli di programmazione della temperatura nelle 24 ore
Comando centrale di controllo	1	-

Dispositivi per la regolazione automatica della temperatura ambiente nei singoli locali o nelle singole zone, ciascuna avente caratteristiche di uso ed esposizioni uniformi.

Descrizione sintetica dei dispositivi	Numero di apparecchi
Sensori di temperatura interni	4

e) Terminali di erogazione dell'energia termica

Tipo di terminali	Numero di apparecchi	Potenza termica nominale [W]
Ventilconvettori	4	16800
Unità tipo split a parete	2	4400
Scaldasalviette elettrico	1	1000

g) Sistemi di trattamento dell'acqua (tipo di trattamento)

Dosatore di polifosfati, filtrazione, addolcitore (impianti previsti nell'edificio Ex-Consiag e pertanto ricompresi in altro appalto)

h) Specifiche dell'isolamento termico della rete di distribuzione

Descrizione della rete	Tipologia di isolante	λ _{is} [W/mK]	Sp _{is} [mm]
Tubazioni rame preisolato	Materiali espansi organici a cella chiusa	0,040	DPR 412/93
Tubazioni multistrato	Materiali espansi organici a cella chiusa	0,040	DPR 412/93

λ_{is} Conduttività termica del materiale isolante

j) Schemi funzionali degli impianti termici

Allegati

Spis Spessore del materiale isolante

6. PRINCIPALI RISULTATI DEI CALCOLI

Edificio: Blocco Ex. Capannone Artigianale

a) Involucro edilizio e ricambi d'aria

Caratteristiche termiche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Trasmittanza media [W/m²K]	Valore limite [W/m²K]	Verifica
P1	SOLAIO PIANO TERRA SU IGLOO ISOLATO	0,186	0,320	Positiva
M1	PARETE ESTERNA PRINCIPALE	1,315	*	*
M2	PARETE ESTERNA LATO STRADA	1,337	*	*
M6	PARETE INTERNA 40 cm vs Locali NR	1,274	*	*
M8	PARETE ESTERNA 30 cm	1,716	*	*
S1	COPERTURA	1,808	*	*
54	SOFFITTO INTERPIANO vs locali NR	1,783	*	*

^(*) Struttura esistente, non soggetta alle verifiche di legge.

Caratteristiche termiche dei divisori opachi e delle strutture dei locali non climatizzati

Cod.	Descrizione	Trasmittanza U [W/m²K]	Trasmittanza media [W/m²K]
М3	PARETE ESTERNA Locali NR	1,412	1,412
M4	PARETE ESTERNA LATO STRADA Locali NR	1,443	1,443
M7	PARETE ESTERNA 30 cm locali NR	1,715	1,715
S2	COPERTURA locale NR	2,113	2,113

Caratteristiche igrometriche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Condensa superficiale	Condensa interstiziale
P1	SOLAIO PIANO TERRA SU IGLOO ISOLATO	Positiva	Positiva
M1	PARETE ESTERNA PRINCIPALE	*	*
M2	PARETE ESTERNA LATO STRADA	*	*
M6	PARETE INTERNA 40 cm vs Locali NR	*	*
M8	PARETE ESTERNA 30 cm	*	*
S1	COPERTURA	*	*
S4	SOFFITTO INTERPIANO vs locali NR	*	*

^(*) Struttura esistente, non soggetta alle verifiche di legge.

Caratteristiche di massa superficiale Ms e trasmittanza periodica YIE dei componenti opachi

Cod.	Descrizione	Ms [kg/m²]	YIE [W/m²K]
M2	PARETE ESTERNA LATO STRADA	666	0,240
M8	PARETE ESTERNA 30 cm	486	0,493
S1	COPERTURA	138	1,702

Trasmittanza termica dei componenti finestrati Uw

Cod.	Descrizione	Trasmittanza U _w [W/m²K]	Valore limite [W/m²K]	Verifica
W12	110 x110	1,600	1,800	Positiva
W14	120 x285	1,600	1,800	Positiva
W15	142 x285	1,600	1,800	Positiva
W16	83 x144	1,600	1,800	Positiva

W17	Velux 50 x60	1,600	1,800	Positiva
W18	142 x144	1,600	1,800	Positiva
W13	300 x388	4,553	*	*

^(*) Struttura esistente, non soggetta alle verifiche di legge.

Fattore di trasmissione solare totale

Cod.	Descrizione	g _{gl+sh} struttura [W/m²K]	g _{gl+sh} limite [W/m²K]	Verifica
W17	Velux 50 x60	0,30	0,35	Positiva
W18	142 x144	0,30	0,35	Positiva

Numero di ricambi d'aria (media nelle 24 ore) – specificare per le diverse zone

N.	Descrizione	Valore di progetto [vol/h]	Valore medio 24 ore [vol/h]
1	Zona climatizzata	1,26	0,73

Portata d'aria di ricambio (solo nei casi di ventilazione meccanica controllata)

Q.tà	Portata G [m ³ /h]	Portata G _R [m ³ /h]	η⊤ [%]
1	389,9	-	-

- G Portata d'aria di ricambio per ventilazione meccanica controllata
- G_R Portata dell'aria circolante attraverso apparecchiature di recupero del calore disperso
- η_T Rendimento termico delle apparecchiature di recupero del calore disperso

b) Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione e l'illuminazione

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m² anno, così come definite al paragrafo 3.3 dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, rendimenti e parametri che ne caratterizzano l'efficienza energetica:

Metodo di calcolo utilizzato (indicazione obbligatoria)

UNI/TS 11300 e norme correlate

Coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente (UNI EN ISO 13789)

Zona climatizzata		
Superficie disperdente S	140,04	m^2
Valore di progetto H'_T	0,35	W/m ² K
Valore limite (Tabella 10, appendice A) $H'_{T,L}$	0,68	W/m ² K
Verifica (positiva / negativa)	Positiva	
Indice di prestazione termica utile per la climatizzazi Valore di progetto EP _{H,nd}	ione invernale de 254,55	e ll'edificio kWh/m²

Indice di prestazione termica utile per la climatizzazione estiva dell'edificio

Valore di progetto EP_{C,nd} 48,53 kWh/m²

Indice della prestazione energetica globale dell'edificio (Energia primaria)

Prestazione energetica per riscaldamento EP _H	360,50	kWh/m²
Prestazione energetica per acqua sanitaria EP _W	21,61	kWh/m²
Prestazione energetica per raffrescamento EP _C	43,58	kWh/m ²

Prestazione energetica per ventilazione EP _V	14,90	kWh/m ²
Prestazione energetica per illuminazione EP _L	64,65	kWh/m²
Prestazione energetica per servizi EP _T	0,00	kWh/m²
Valore di progetto EP _{gl,tot}	505,23	kWh/m²

Indice della prestazione energetica globale dell'edificio (Energia primaria non rinnovabile)

Valore di progetto EP_{gl,nr} 238,29 kWh/m²

b.1) Efficienze medie stagionali degli impianti

Descrizione	Servizi	η ₉ [%]	ղ _{ց,аmm} [%]	Verifica
Zona climatizzata	Riscaldamento	70,6	64,4	Positiva
Zona climatizzata	Acqua calda sanitaria	51,6	44,6	Positiva
Zona climatizzata	Raffrescamento	111,4	54,6	Positiva

Consuntivo energia

Energia consegnata o fornita (E _{del}) 8908		kWh
Energia rinnovabile (Egl,ren)	266,93	kWh/m²
Energia esportata (E _{exp})	<u> </u>	kWh
Fabbisogno annuo globale di energia primaria (E _{gl,tot})	505,23	kWh/m²
Energia rinnovabile in situ (elettrica)	<u> </u>	$kWh_{e} \\$
Energia rinnovabile in situ (termica)	<u> </u>	kWh

f) Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

7. ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

Nei casi in cui la normativa vigente consente di derogare ad obblighi generalmente validi, in questa sezione vanno adeguatamente illustrati i motivi che giustificano la deroga nel caso specifico.

8. DOCUMENTAZIONE ALLEGATA

[X]	Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi. N Rif.: M01 - M04
[]	Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi. N. Rif.:
[]	Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari. N Rif.:
[X]	Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo "Dati relativi agli impianti". N. Rif.: Tav. M02
[X]	Tabelle con indicazione delle caratteristiche termiche, termoigrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali. N. Rif.: Allegati
[X]	Tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e della loro permeabilità all'aria. N. Rif.: Allegati
[]	Tabelle indicanti i provvedimenti ed i calcoli per l'attenuazione dei ponti termici. N. Rif.:
[]	Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza. N. Rif.:
[]	Altri allegati. N. Rif.:
	coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente di rollo presso i progettisti:
[X]	Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali.
[X]	Calcolo energia utile invernale del fabbricato Q _{h,nd} secondo UNI/TS 11300-1.
[X]	Calcolo energia utile estiva del fabbricato Q _{C,nd} secondo UNI/TS 11300-1.
[X]	Calcolo dei coefficienti di dispersione termica H_T - H_U - H_G - H_A - H_V .
[X]	Calcolo mensile delle perdite $(Q_{h,ht})$, degli apporti solari (Q_{sol}) e degli apporti interni (Q_{int}) secondo UNI/TS 11300-1.
[X]	Calcolo degli scambi termici ordinati per componente.
[X]	Calcolo del fabbisogno di energia primaria rinnovabile, non rinnovabile e totale secondo UNI/TS 11300-5.
[X]	Calcolo del fabbisogno di energia primaria per la climatizzazione invernale secondo UNI/TS 11300-2 e UNI/TS 11300-4.
[X]	Calcolo del fabbisogno di energia primaria per la produzione di acqua calda sanitaria secondo UNI/TS 11300-2 e UNI/TS 11300-4.
[X]	Calcolo del fabbisogno di energia primaria per la climatizzazione estiva secondo UNI/TS 11300-3.
[X]	Calcolo del fabbisogno di energia primaria per l'illuminazione artificiale degli ambienti secondo UNI/TS 11300-2 e UNI EN 15193.
[X]	Calcolo del fabbisogno di energia primaria per il servizio di trasporto di persone o cose secondo UNI/TS 11300-6.

Data, <u>14/03/2023</u>

Il progettista

9.	DICHIAR	AZIONE DI RIS	PONDENZA		
Ι	l sottoscritto	Ingegnere TITOLO	Roberto NOME	Ferrara COGNOME	
is	scritto a	Ingegneri		Prato	b74
		ALBO – ORDINE O	COLLEGIO DI APPARTENENZA	PROV.	N. ISCRIZIONE
	endo a conosc a direttiva 200		oni previste all'articolo 15, comn	ni 1 e 2, del decreto	legislativo di attuazione
sot	to la propria re	sponsabilità che:			
a)			di cui sopra è rispondente alle di cui all'articolo 4, comma 1 del		
b)	i dati e le info elaborati prog		uti nella relazione tecnica sono co	onformi a quanto con	tenuto o desumibile dagli

FIRMA

TIMBRO

Relazione tecnica di calcolo

prestazione energetica del sistema edificio-impianto

EDIFICIO Blocco Ex. Capannone Artigianale

INDIRIZZO Piazza dei Macelli 4

COMMITTENTE Comune di prato

INDIRIZZO Piazza del Comune 2

COMUNE **Prato**

ING. FERRARA ROBERTO VIA SAN CRESCI, 85 - 50013 CAMPI BISENZIO (FI)

DATI PROGETTO ED IMPOSTAZIONI DI CALCOLO

Dati generali

Destinazione d'uso prevalente (DPR 412/93) E.2 Edifici adibiti a uffici e assimilabili.

Edificio pubblico o ad uso pubblico Si
Edificio situato in un centro storico No

Tipologia di calcolo Calcolo regolamentare (valutazione A1/A2)

Opzioni lavoro

Ponti termici Calcolo analitico

Resistenze liminari Appendice A UNI EN ISO 6946

Serre / locali non climatizzati

Calcolo analitico

Capacità termica

Calcolo semplificato

Ombreggiamenti

Calcolo automatico

Radiazione solare Calcolo con angolo di Azimut

Opzioni di calcolo

Regime normativo UNI/TS 11300-4 e 5:2016
Rendimento globale medio stagionale FAQ ministeriali (agosto 2016)

Verifica di condensa interstiziale UNI EN ISO 13788

DATI CLIMATICI DELLA LOCALITÀ

Caratteristiche geografiche

Località **Prato**Provincia **Prato**

Altitudine s.l.m. **61** m

Latitudine nord 43° 52′ Longitudine est 11° 5′

Gradi giorno DPR 412/93

Zona climatica

D

Località di riferimento

per dati invernali **Prato**per dati estivi **Prato**

Stazioni di rilevazione

per la temperatura Artimino
per l'irradiazione Artimino
per il vento Artimino

Caratteristiche del vento

Regione di vento:

Direzione prevalente Nord-Est

Distanza dal mare> 40 kmVelocità media del vento1,8 m/sVelocità massima del vento3,6 m/s

Dati invernali

Temperatura esterna di progetto 0,0 °C

Stagione di riscaldamento convenzionale dal *01 novembre* al *15 aprile*

Dati estivi

Temperatura esterna bulbo asciutto

Temperatura esterna bulbo umido

Umidità relativa

Escursione termica giornaliera

32,5 °C

22,9 °C

45,0 %

Temperature esterne medie mensili

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	6,7	8,0	10,4	13,0	18,2	21,7	24,5	24,6	19,8	16,0	11,0	6,9

Irradiazione solare media mensile

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m²	1,7	2,6	4,0	5,6	8,1	10,3	10,0	7,3	4,7	3,0	1,9	1,3
Nord-Est	MJ/m²	1,9	3,5	5,8	8,0	11,0	13,2	13,2	11,0	7,3	4,2	2,3	1,4
Est	MJ/m²	4,8	7,2	9,1	10,7	13,4	15,3	15,8	14,5	11,0	7,4	5,5	4,0
Sud-Est	MJ/m²	8,7	10,9	11,2	11,2	12,4	13,4	14,0	14,3	12,6	10,2	9,5	7,9
Sud	MJ/m²	11,3	13,1	11,7	10,1	10,1	10,5	11,1	12,0	12,2	11,5	12,1	10,4
Sud-Ovest	MJ/m²	8,7	10,9	11,2	11,2	12,4	13,4	14,0	14,3	12,6	10,2	9,5	7,9
Ovest	MJ/m²	4,8	7,2	9,1	10,7	13,4	15,3	15,8	14,5	11,0	7,4	5,5	4,0
Nord-Ovest	MJ/m²	1,9	3,5	5,8	8,0	11,0	13,2	13,2	11,0	7,3	4,2	2,3	1,4
Orizz. Diffusa	MJ/m²	2,2	3,4	5,5	7,2	8,7	9,9	9,6	8,0	6,1	4,1	2,4	1,6
Orizz. Diretta	MJ/m²	3,5	5,8	7,2	8,7	11,9	14,1	14,9	13,6	9,5	5,8	4,3	3,0

Irradianza sul piano orizzontale nel mese di massima insolazione: 284 W/m²

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: PARETE ESTERNA PRINCIPALE

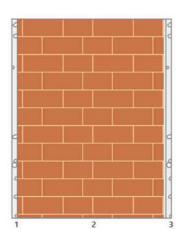
Trasmittanza termica **1,412** W/m²K

Spessore 400 mm

Temperatura esterna (calcolo potenza invernale) **0,0** °C

Permeanza **55,096** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 708 kg/m²


Massa superficiale 666 kg/m²

(senza intonaci)

Trasmittanza periodica **0,215** W/m²K

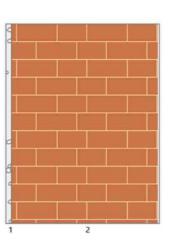
Fattore attenuazione **0,152** -

Sfasamento onda termica -12,4 h

Codice: M1

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna			0,130			
1	Intonaco di gesso	15,00	0,4000	0,038	1000	1,00	10
2	Mattoni pieni	370,00	0,8000	0,463	1800	0,84	9
3	Intonaco di cemento e sabbia	15,00	1,0000	0,015	1800	1,00	10
-	Resistenza superficiale esterna	-	-	0,063	-	-	-


S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

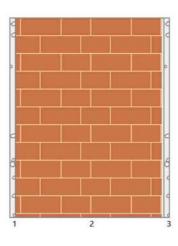
Descrizione della struttura: PARETE ESTERNA LATO STRADA

Trasmittanza termica	1,443	W/m ² K
Spessore	385	mm
Temperatura esterna (calcolo potenza invernale)	0,0	°C
Permeanza	<i>57,471</i>	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	681	kg/m²
Massa superficiale (senza intonaci)	666	kg/m²

Trasmittanza periodica **0,240** W/m²K

Fattore attenuazione **0,166** - Sfasamento onda termica **-11,9** h

Codice: M2


Stratigrafia:

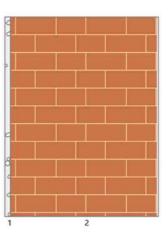
N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130			
1	Intonaco di gesso	15,00	0,4000	0,038	1000	1,00	10
2	Mattoni pieni	370,00	0,8000	0,463	1800	0,84	9
-	Resistenza superficiale esterna	-	-	0,063	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Descrizione della struttura: PARETE ESTERNA Locali NR

Trasmittanza termica	1,412	W/m ² K
Spessore	400	mm
Temperatura esterna (calcolo potenza invernale)	0,0	°C
Permeanza	<i>55,096</i>	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	708	kg/m²
Massa superficiale (senza intonaci)	666	kg/m²
Trasmittanza periodica	0,215	W/m ² K
Fattore attenuazione	0,152	-
Sfasamento onda termica	-12,4	h

Codice: M3

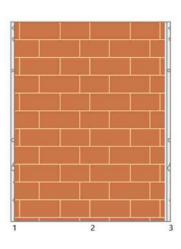

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130			
1	Intonaco di gesso	15,00	0,4000	0,038	1000	1,00	10
2	Mattoni pieni	370,00	0,8000	0,463	1800	0,84	9
3	Intonaco di cemento e sabbia	15,00	1,0000	0,015	1800	1,00	10
-	Resistenza superficiale esterna	-	1	0,063	1	-	

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> PARETE ESTERNA LATO STRADA Locali NR <u>Codice:</u> M4

Trasmittanza termica	1,443	W/m ² K
Spessore	385	mm
Temperatura esterna (calcolo potenza invernale)	0,0	°C
Permeanza	<i>57,471</i>	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	681	kg/m²
Massa superficiale (senza intonaci)	666	kg/m²
Trasmittanza periodica	0,240	W/m ² K
Fattore attenuazione	0,166	-
Sfasamento onda termica	-11,9	h


Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130			
1	Intonaco di gesso	15,00	0,4000	0,038	1000	1,00	10
2	Mattoni pieni	370,00	0,8000	0,463	1800	0,84	9
-	Resistenza superficiale esterna	-	-	0,063	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> PARETE INTERNA 40 cm vs Locali NR

Trasmittanza termica	1,274	W/m ² K
Spessore	400	mm
Temperatura esterna (calcolo potenza invernale)	8,2	°C
Permeanza	<i>55,249</i>	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	704	kg/m²
Massa superficiale (senza intonaci)	684	kg/m²
Trasmittanza periodica	0,149	W/m²K
Fattore attenuazione	0,117	-
Sfasamento onda termica	-13,0	h

Codice: M6

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna			0,130			-
1	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
2	Mattoni pieni	380,00	0,8000	0,475	1800	0,84	9
3	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
-	Resistenza superficiale esterna	_	-	0,130	-	-	-

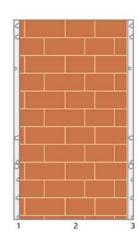
S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Descrizione della struttura: PARETE ESTERNA 30 cm locali NR

Trasmittanza termica	1,715	W/m²K

Spessore 300 mm

Temperatura esterna (calcolo potenza invernale) 0,0 °C


Permeanza **73,260** 10⁻¹²kg/sm²Pa

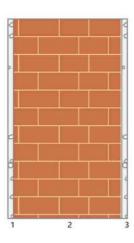
Massa superficiale (con intonaci) 528 kg/m²

Massa superficiale (senza intonaci) 486 kg/m²

Trasmittanza periodica **0,493** W/m²K

Fattore attenuazione **0,288** - Sfasamento onda termica **-9,3** h

Codice: M7


Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130	-		-
1	Intonaco di gesso	15,00	0,4000	0,038	1000	1,00	10
2	Mattoni pieni	270,00	0,8000	0,338	1800	0,84	9
3	Intonaco di cemento e sabbia	15,00	1,0000	0,015	1800	1,00	10
-	Resistenza superficiale esterna	-	-	0,063	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Descrizione della struttura: PARETE ESTERNA 30 cm

Trasmittanza termica	1,715	W/m²K
Spessore	300	mm
Temperatura esterna (calcolo potenza invernale)	0,0	°C
Permeanza	73,260	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	<i>528</i>	kg/m²
Massa superficiale (senza intonaci)	486	kg/m²
Trasmittanza periodica	0,493	W/m ² K
Fattore attenuazione	0,288	-

Codice: M8

Stratigrafia:

Sfasamento onda termica

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130	-		-
1	Intonaco di gesso	15,00	0,4000	0,038	1000	1,00	10
2	Mattoni pieni	270,00	0,8000	0,338	1800	0,84	9
3	Intonaco di cemento e sabbia	15,00	1,0000	0,015	1800	1,00	10
-	Resistenza superficiale esterna	-	-	0,063	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

-9,3 h

Descrizione della struttura: PARETE INTERNA

Trasmittanza termica **2,116** W/m²K

Spessore 150 mm

Permeanza 145,98 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 254 kg/m²

Massa superficiale (senza intonaci) 234 kg/m²

Trasmittanza periodica **1,210** W/m²K

Fattore attenuazione **0,572** -

Sfasamento onda termica -5,0 h

Codice: M12

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	1	1	0,130	1	1	
1	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
2	Mattoni pieni	130,00	0,8000	0,163	1800	0,84	9
3	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
-	Resistenza superficiale esterna			0,130			-

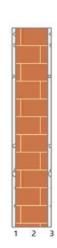
S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R V	Fattore di resistenza alla diffusione del vanore in cano asciutto	_

Descrizione della struttura: PARETE INTERNA

Trasmittanza termica **2,439** W/m²K

Spessore 100 mm

Permeanza 217,39 10⁻¹²kg/sm²Pa


Massa superficiale (con intonaci) 164 kg/m²

Massa superficiale (senza intonaci) 144 kg/m²

Trasmittanza periodica **1,855** W/m²K

Fattore attenuazione **0,761** -

Sfasamento onda termica -3,3 h

Codice: M13

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	1	0,130	1		
1	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
2	Mattoni pieni	80,00	0,8000	0,100	1800	0,84	9
3	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
-	Resistenza superficiale esterna	-		0,130			-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Descrizione della struttura: PARETE INTERNA

Trasmittanza termica **1,274** W/m²K

Spessore 400 mm

Permeanza **55,249** 10⁻¹²kg/sm²Pa

Massa superficiale 704 kg/m²

(con intonaci)

Massa superficiale (senza intonaci) **684** kg/m²

Trasmittanza periodica **0,149** W/m²K

Fattore attenuazione **0,117** -

Sfasamento onda termica -13,0 h

Codice: M17

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna			0,130			
1	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
2	Mattoni pieni	380,00	0,8000	0,475	1800	0,84	9
3	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
-	Resistenza superficiale esterna			0,130			-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R V	Fattore di resistenza alla diffusione del vanore in cano asciutto	_

Descrizione della struttura: PARETE INTERNA

Trasmittanza termica **2,010** W/m²K

Spessore 170 mm

Permeanza 129,03 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 290 kg/m²

Massa superficiale (senza intonaci) 270 kg/m²

Trasmittanza periodica **1,019** W/m²K

Fattore attenuazione 0,507 -

Sfasamento onda termica -5,7 h

Codice: M18

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	1	1	0,130	1		
1	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
2	Mattoni pieni	150,00	0,8000	0,188	1800	0,84	9
3	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
-	Resistenza superficiale esterna			0,130			-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

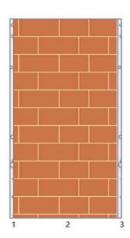
Descrizione della struttura: PARETE INTERNA

Trasmittanza termica **1,575** W/m²K

Spessore 280 mm

Permeanza **78,740** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 488 kg/m²


Massa superficiale

(senza intonaci) 468 kg/m²

Trasmittanza periodica **0,404** W/m²K

Fattore attenuazione **0,256** -

Sfasamento onda termica -9,2 h

Codice: M19

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	1	1	0,130	1		
1	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
2	Mattoni pieni	260,00	0,8000	0,325	1800	0,84	9
3	Intonaco di gesso	10,00	0,4000	0,025	1000	1,00	10
-	Resistenza superficiale esterna			0,130			-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

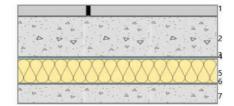
<u>Descrizione della struttura:</u> SOLAIO PIANO TERRA SU IGLOO ISOLATO Codice: P1

W/m²K 0,442 Trasmittanza termica W/m²K Trasmittanza controterra 0,280

Spessore **247** mm

Temperatura esterna 0,0 °C (calcolo potenza invernale)

10⁻¹²kg/sm²Pa 0,001 Permeanza


Massa superficiale **351** kg/m² (con intonaci)

Massa superficiale

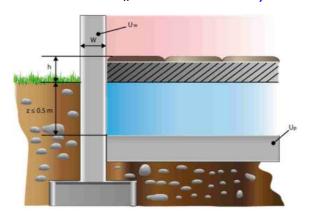
351 kg/m² (senza intonaci)

0,135 W/m²K Trasmittanza periodica

0,481 Fattore attenuazione Sfasamento onda termica -8,0 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna			0,170		-	-
1	Piastrelle in ceramica (piastrelle)	30,00	1,3000	0,023	2300	0,84	9999999
2	Sottofondo di cemento magro	100,00	0,7000	0,143	1600	0,88	20
3	Barriera vapore in fogli di polietilene	1,00	0,3300	0,003	920	2,20	100000
4	Fonostop Duo	3,00	0,0390	0,077	320	1,30	100000
5	URSA XPS NIII I sp. 60 mm - Pannelli in polistirene estruso 1250 x 600 mm, resistenza a compressione 300 kPa, superfici liscie con pelle e bordi laterali dritti, per isolamento sotto pavimento e sotto pavimento radiante.	60,00	0,0340	1,765	30	1,45	100
6	Impermeabilizzazione con bitume	3,00	0,1700	0,018	1200	1,00	188000
7	C.I.s. armato (1% acciaio)	50,00	2,3000	0,022	2300	1,00	130
-	Resistenza superficiale esterna	-	-	0,040	-	-	-


S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370

Pavimento su spazio aerato:

SOLAIO PIANO TERRA SU IGLOO ISOLATO

Area del pavimento		110,00	m²
Perimetro disperdente del pavimento		45,00	m
Spessore pareti perimetrali esterne		400	mm
Conduttività termica del terreno		2,00	W/mK
Altezza del pavimento dal terreno	h	0,02	m
Trasmittanza pareti dello spazio aerato	U_{W}	2,10	W/m²K
Trasmittanza pavimento dello spazio aerato	U_P	4,00	W/m²K
Area aperture ventilazione/m di perimetro	ε	0,00	m²/m
Coefficiente di protezione dal vento	f _w	0,02	

Codice: P1

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: SOLAIO PIANO TERRA SU IGLOO ISOLATO Codice: P1

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)

Positiva

Mese critico

Fattore di temperatura del mese critico

Fattore di temperatura del componente $f_{RSI,max}$ 0,401Fattore di temperatura del componente f_{RSI} 0,893Umidità relativa superficiale accettabile

80 %

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

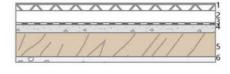
Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Descrizione della struttura: COPERTURA

Trasmittanza termica **2,042** W/m²K

Spessore 149 mm
Temperatura esterna 0,0 °C

(calcolo potenza invernale)


Permeanza **0,265** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 165 kg/m²

Massa superficiale (senza intonaci) 138 kg/m²

Trasmittanza periodica **1,702** W/m²K

Fattore attenuazione **0,834** - Sfasamento onda termica **-3,5** h

Codice: S1

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna			0,063	1		-
1	Tegole in terracotta	20,00	1,0000		2000	0,80	-
2	Intercapedine debolmente ventilata Av=1000 mm²/m	30,00		1	1	1	-
3	Impermeabilizzazione in cartone catramato	4,00	0,5000		1600	1,00	188000
4	Massetto ripartitore in calcestruzzo con rete	20,00	1,4900	-	2200	0,88	70
5	Tavelloni	60,00	0,3330	-	800	0,84	9
6	Malta di calce o di calce e cemento	15,00	0,9000		1800	1,00	22
-	Resistenza superficiale interna	-	-	0,100	-	-	-

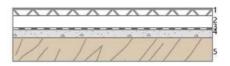
S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> <u>COPERTURA locale NR</u>

Trasmittanza termica **2,113** W/m²K

Spessore 134 mm

Temperatura esterna (calcolo potenza invernale) **0,0** °C


Permeanza **0,265** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 138 kg/m²

Massa superficiale (senza intonaci) 138 kg/m²

Trasmittanza periodica **1,846** W/m²K

Fattore attenuazione **0,873** - Sfasamento onda termica **-2,9** h

Codice: 52

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-		0,063	-		-
1	Tegole in terracotta	20,00	1,0000		2000	0,80	-
2	Intercapedine debolmente ventilata Av=1000 mm²/m	30,00	1	1	-	1	-
3	Impermeabilizzazione in cartone catramato	4,00	0,5000		1600	1,00	188000
4	Massetto ripartitore in calcestruzzo con rete	20,00	1,4900	-	2200	0,88	70
5	Tavelloni	60,00	0,3330	-	800	0,84	9
-	Resistenza superficiale interna	-		0,100	-		-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

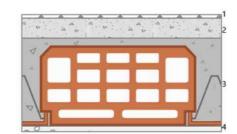
<u>Descrizione della struttura:</u> SOFFITTO INTERPIANO vs locali NR <u>Codice:</u> S4

Trasmittanza termica **1,704** W/m²K

Spessore 295 mm

Temperatura esterna (calcolo potenza invernale) **8,2** °C

Permeanza **25,608** 10⁻¹²kg/sm²Pa


Massa superficiale (con intonaci) 421 kg/m²

Massa superficiale

(senza intonaci) 394 kg/m²

Trasmittanza periodica **0,654** W/m²K

Fattore attenuazione **0,384** - Sfasamento onda termica **-8,3** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-		0,100	-		
1	PAVIMENTO GRES	10,00	1,4700	0,007	1700	1,00	200
2	Massetto ripartitore in calcestruzzo con rete	50,00	1,4900	0,034	2200	0,88	70
3	Blocco da solaio	220,00	0,6670	0,330	1214	0,84	9
4	Malta di calce o di calce e cemento	15,00	0,9000	0,017	1800	1,00	22
-	Resistenza superficiale interna	-	-	0,100	-	-	-

Spessore	mm
Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
Resistenza termica	m²K/W
Massa volumica	kg/m³
Capacità termica specifica	kJ/kgK
Fattore di resistenza alla diffusione del vapore in capo asciutto	-
	Conduttività termica, comprensiva di eventuali coefficienti correttivi Resistenza termica Massa volumica Capacità termica specifica

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

0,6

Descrizione della finestra: 110 x110

Caratteristiche del serramento

Tipologia di serramento

Classe 4 secondo Norma Classe di permeabilità **UNI EN 12207**

Trasmittanza termica U_{w} **1,600** W/m²K Trasmittanza solo vetro 1,100 W/m²K U_{α}

Dati per il calcolo degli apporti solari

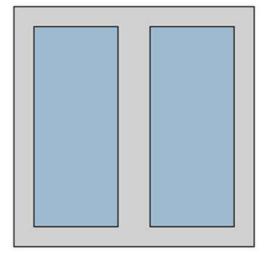
Emissività 0,837 ε Fattore tendaggi (invernale) $f_{c inv}$ 0,45 Fattore tendaggi (estivo) 0,45 $f_{c \; est}$ Fattore di trasmittanza solare 0,670 $g_{gl,n}$ Fattore trasmissione solare totale 0,298 g_{ql+sh}

Resistenza termica chiusure **0,00** m²K/W f shut

Dimensioni del serramento

Larghezza 110,0 cm Altezza 110,0 cm

Caratteristiche del telaio


K distanziale **0,00** W/mK K_d **1,210** m² Area totale A_{w} \boldsymbol{A}_{g} Area vetro 0,708 m^2 Area telaio A_{f} **0,502** m² Fattore di forma 0,59 F_f _ Perimetro vetro $L_{g} \\$ 5,220 m Perimetro telaio 4,400 Lf m

Caratteristiche del modulo

Trasmittanza termica del modulo 2,198 W/m²K U

Ponte termico del serramento

Ponte termico associato **Z5** - Parete - Telaio Trasmittanza termica lineica Ψ **0,164** W/mK Lunghezza perimetrale 4,40 m

Codice: W12

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 300 x388

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Senza classificazione

Trasmittanza termica U_w 4,553 W/m²K Trasmittanza solo vetro U_q 4,972 W/m²K

Dati per il calcolo degli apporti solari

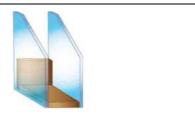
Emissività ϵ 0,837 - Fattore tendaggi (invernale) $f_{c inv}$ 1,00 - Fattore tendaggi (estivo) $f_{c est}$ 1,00 - Fattore di trasmittanza solare $g_{gl,n}$ 0,850 - Fattore trasmissione solare totale g_{gl+sh} 0,835 -

Caratteristiche delle chiusure oscuranti

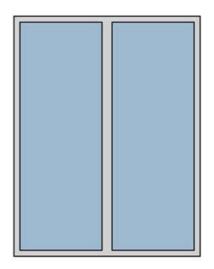
Resistenza termica chiusure **0,00** m²K/W f shut **0,6** -

Dimensioni del serramento

 Larghezza
 300,0 cm


 Altezza
 388,0 cm

Trasmittanza termica del telaio U_{f} 2,20 W/m²K K distanziale K_{d} **0,00** W/mK Area totale **11,640** m² A_w Area vetro 9,879 m² A_q Area telaio **1,761** m² A_{f} Fattore di forma 0,85 Ff Perimetro vetro **20,140** m Perimetro telaio 13,760


Stratigrafia del pacchetto vetrato

Descrizione strato	s	λ	R
Resistenza superficiale interna	-	•	0,130
Primo vetro	4,0	1,00	0,004
Intercapedine	-	-	0,000
Secondo vetro	4,0	1,00	0,004
Resistenza superficiale esterna	-	-	0,063

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttività termica} \qquad \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad \qquad m^2 K/W$

Codice: W13

Caratteristiche del modulo

Trasmittanza termica del modulo U 4,747 W/m²K

Ponte termico del serramento

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 120 x285

Caratteristiche del serramento

Tipologia di serramento

Classe 4 secondo Norma Classe di permeabilità

UNI EN 12207

Trasmittanza termica 1,600 W/m²K U_{w} Trasmittanza solo vetro 1,100 W/m²K U_{α}

Dati per il calcolo degli apporti solari

Emissività 0,837 ε Fattore tendaggi (invernale) $f_{c inv}$ 0,45 Fattore tendaggi (estivo) 0,45 $f_{c \; est}$ Fattore di trasmittanza solare 0,670 $g_{gl,n}$ Fattore trasmissione solare totale 0,296 g_{ql+sh}

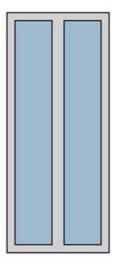
Resistenza termica chiusure **0,00** m²K/W

f shut 0,6 -

Dimensioni del serramento

Larghezza 120,0 cm Altezza 285,0 cm

Caratteristiche del telaio


K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	3,420	m^2
Area vetro	A_{g}	2,323	m^2
Area telaio	A_f	1,097	m^2
Fattore di forma	F_f	0,68	-
Perimetro vetro	L_g	12,420	m
Perimetro telaio	L_f	8,100	m

Caratteristiche del modulo

Trasmittanza termica del modulo 1,989 W/m²K U

Ponte termico del serramento

Ponte termico associato **Z5** - Parete - Telaio Trasmittanza termica lineica Ψ **0,164** W/mK Lunghezza perimetrale 8,10 m

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 142 x285

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari

Emissività ϵ 0,837 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,45 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,45 - Fattore di trasmittanza solare $g_{gl,n}$ 0,670 - Fattore trasmissione solare totale g_{gl+sh} 0,296 -

Caratteristiche delle chiusure oscuranti

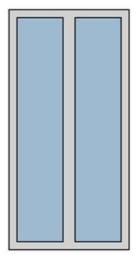
Resistenza termica chiusure 0,00 m²K/W

f shut **0,6**

Dimensioni del serramento

Larghezza **142,0** cm Altezza **285,0** cm

Caratteristiche del telaio


K distanziale **0,00** W/mK K_d Area totale 4,047 m^2 A_{w} \boldsymbol{A}_{g} Area vetro 2,910 m^2 Area telaio A_{f} **1,137** m² Fattore di forma 0,72 F_f _ Perimetro vetro $L_{g} \\$ 12,860 m Perimetro telaio 8,540 m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,947 W/m²K

Ponte termico del serramento

Ponte termico associato $\begin{tabular}{lll} \it Z5 &\it W - Parete - Telaio \\ \it Trasmittanza termica lineica &\it \Psi &\it 0,164 &\it W/mK \\ \it Lunghezza perimetrale &\it 8,54 &\it m \\ \end{tabular}$

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 83 x144

Caratteristiche del serramento

Tipologia di serramento

Classe 4 secondo Norma Classe di permeabilità

UNI EN 12207

Trasmittanza termica 1,600 W/m²K U_{w} Trasmittanza solo vetro 1,100 W/m²K U_{α}

Dati per il calcolo degli apporti solari

Emissività 0,837 ε Fattore tendaggi (invernale) $f_{c inv}$ 0,45 Fattore tendaggi (estivo) 0,45 $f_{c \; est}$ Fattore di trasmittanza solare 0,670 $g_{gl,n}$ Fattore trasmissione solare totale 0,296 g_{ql+sh}

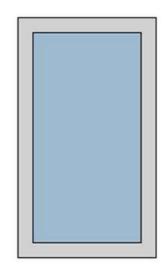
Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W f shut 0,6 -

Dimensioni del serramento

Larghezza 83,0 cm Altezza **144,0** cm

Caratteristiche del telaio


K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	1,195	m^2
Area vetro	A_{g}	0,819	m^2
Area telaio	A_f	0,376	m^2
Fattore di forma	F_f	0,69	-
Perimetro vetro	L_g	3,820	m
Perimetro telaio	L_f	4,540	m

Caratteristiche del modulo

Trasmittanza termica del modulo 2,224 W/m²K U

Ponte termico del serramento

Ponte termico associato **Z5** - Parete - Telaio Trasmittanza termica lineica Ψ **0,164** W/mK Lunghezza perimetrale 4,54

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Velux 50 x60

Caratteristiche del serramento

Tipologia di serramento -

Classe di permeabilità Classe 4 secondo Norma UNI EN 12207

Trasmittanza termica U_w **1,600** W/m²K Trasmittanza solo vetro U_a **1,100** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,837 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,45 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,45 - Fattore di trasmittanza solare $g_{gl,n}$ 0,670 - Fattore trasmissione solare totale g_{gl+sh} 0,296 -

Caratteristiche delle chiusure oscuranti

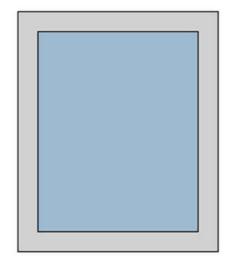
Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza **50,0** cm Altezza **60,0** cm

Caratteristiche del telaio


K distanziale **0,00** W/mK K_d **0,300** m² Area totale A_{w} \boldsymbol{A}_{g} Area vetro 0,200 m^2 **0,100** m² Area telaio A_{f} Fattore di forma 0,67 F_f _ Perimetro vetro $L_{g} \\$ 1,800 m Perimetro telaio 2,200 Lf m

Caratteristiche del modulo

Trasmittanza termica del modulo U **2,806** W/m²K

Ponte termico del serramento

Ponte termico associato $\begin{tabular}{lll} \it{Z5} & \it{W} & -\it{Parete} - \it{Telaio} \\ \it{Trasmittanza termica lineica} & \it{\Psi} & \it{0,164} & \it{W/mK} \\ \it{Lunghezza perimetrale} & \it{2,20} & \it{m} \\ \end{tabular}$

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: 142 x144

Caratteristiche del serramento

Tipologia di serramento -

Classe di permeabilità

Classe 4 secondo Norma
UNI EN 12207

Trasmittanza termica U_w **1,600** W/m²K Trasmittanza solo vetro U_a **1,100** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,837 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,45 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,45 - Fattore di trasmittanza solare $g_{gl,n}$ 0,670 - Fattore trasmissione solare totale g_{gl+sh} 0,298 -

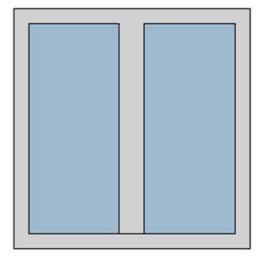
Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,6** -

Dimensioni del serramento

Larghezza 142,0 cm Altezza 144,0 cm


Caratteristiche del telaio

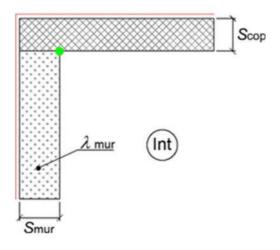
K distanziale **0,00** W/mK K_d **2,045** m² Area totale A_{w} \boldsymbol{A}_{g} Area vetro 1,373 m^2 Area telaio A_{f} **0,671** m² Fattore di forma 0,67 F_f _ Perimetro vetro $L_{g} \\$ **7,220** m Perimetro telaio *5,720* Lf m

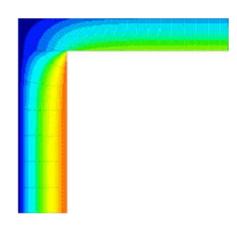
Caratteristiche del modulo

Trasmittanza termica del modulo U **2,060** W/m²K

Ponte termico del serramento

<u>Descrizione del ponte termico:</u> R - Parete - Copertura


Codice: Z1


Tipologia	R - Parete - Copertura	
Trasmittanza termica lineica di calcolo	-0,729 W/mK	
Trasmittanza termica lineica di riferimento	-1,458 W/mK	
Fattore di temperature f _{rsi}	0,244 -	

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

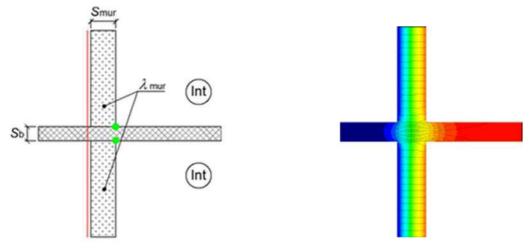
Note

R16 - Giunto parete con isolamento ripartito – copertura non isolata Trasmittanza termica lineica di riferimento (ϕ e) = -1,458 W/mK.

Caratteristiche

Spessore copertura	Scop	100,0	mm
Spessore muro	Smur	<i>370,0</i>	mm
Conduttività termica muro	λmur	0,800	W/mK

<u>Descrizione del ponte termico:</u> **B** - Parete - Balcone


Codice: Z2

Tipologia	B - Parete - Balcone	
Trasmittanza termica lineica di calcolo	0,168 W/mK	
Trasmittanza termica lineica di riferimento	0,335 W/mK	
Fattore di temperature f _{rsi}	0,593 -	

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

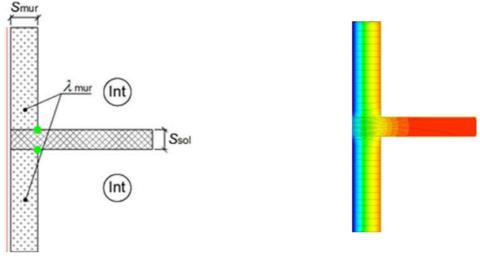
Note

B4 - Giunto parete con isolamento ripartito – balcone Trasmittanza termica lineica di riferimento (ϕ e) = 0,335 W/mK.

Caratteristiche

Spessore balcone	Sb	180,0	mm
Spessore muro	Smur	270,0	mm
Conduttività termica muro	λmur	0,800	W/mK

<u>Descrizione del ponte termico:</u> *IF - Parete - Solaio interpiano*


Codice: Z3

Fattore di temperature f_{rsi} **0,651**

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

IF4 - Giunto parete con isolamento ripartito - solaio interpiano Trasmittanza termica lineica di riferimento (ϕ e) = 0,364 W/mK.

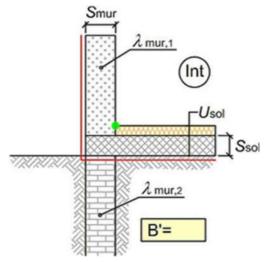
Caratteristiche

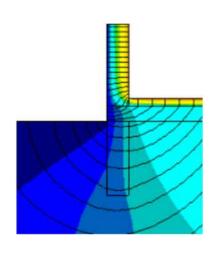
Spessore solaio Ssol 220,0 mm Spessore muro Smur 370,0 mm Conduttività termica muro λ mur 0,800 W/mK

<u>Descrizione del ponte termico:</u> <u>GF - Parete - Solaio controterra</u>

Codice: Z4

Tipologia GF - Parete - Solaio controterra


Trasmittanza termica lineica di calcolo -0,162 W/mK
Trasmittanza termica lineica di riferimento -0,324 W/mK
Fattore di temperature f_{rsi} 0,471 -


Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

GF8 - Giunto parete con isolamento ripartito -solaio controterra con isolamento all'estradosso

Caratteristiche

Conduttività termica muro 2	λmur,2	1,800	W/mK
Dimensione caratteristica del pavimento	Β'	4,89	m
Spessore solaio	Ssol	100,0	mm
Spessore muro	Smur	370,0	mm
Trasmittanza termica solaio	Usol	0,280	W/m²K
Conduttività termica muro 1	λmur,1	0,800	W/mK

Verifica temperatura critica

<u>Condizioni interne:</u> <u>Condizioni esterne:</u>

Classe concentrazione del vapore **0,006** kg/m³ Temperature medie mensili - °C

Temperatura interna periodo di riscaldamento **20,0** °C

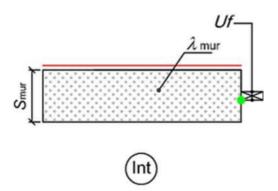
Umidità relativa superficiale ammissibile 80 %

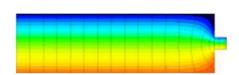
Mese	θi	θe	θsi	Ө асс	Verifica
novembre	20,0	15,5	17,6	16,2	POSITIVA
dicembre	20,0	13,0	16,3	15,5	POSITIVA
gennaio	20,0	11,0	15,2	14,1	POSITIVA
febbraio	20,0	10,9	15,2	14,3	POSITIVA
marzo	20,0	11,5	15,5	14,9	POSITIVA
aprile	20,0	12,7	16,2	15,5	POSITIVA

Legenda simboli

θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

Descrizione del ponte termico: W - Parete - Telaio


Codice: **Z5**


Tipologia	W - Parete -	Telaio
Trasmittanza termica lineica di calcolo	0,164	W/mK
Trasmittanza termica lineica di riferimento	0,164	W/mK
Fattore di temperature f _{rsi}	0,570	-

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

W10 - Giunto parete con isolamento ripartito - telaio posto in mezzeria Trasmittanza termica lineica di riferimento (ϕ e) = 0,164 W/mK.

Caratteristiche

Trasmittanza termica telaio	Uf	1,400	W/m²K
Spessore muro	Smur	370,0	mm
Conduttività termica muro	λmur	0,800	W/mK

FABBISOGNO DI POTENZA TERMICA INVERNALE secondo UNI EN 12831

Prato

Dati climatici della località:

Località

Provincia	Prato	
Altitudine s.l.m.	61	m
Gradi giorno	1668	
Zona climatica	D	
Temperatura esterna di progetto	0,0	°C

Dati geometrici dell'intero edificio:

Superficie in pianta netta	104,36	m^2
Superficie esterna lorda	532,95	m^2
Volume netto	559,18	m^3
Volume lordo	729,23	m^3
Rapporto S/V	0,73	m ⁻¹

Opzioni di calcolo:

Metodologia di calcolo **Vicini presenti**Coefficiente di sicurezza adottato

Coefficienti di esposizione solare:

Nord: **1,20**

Nord-Ovest: **1,15** Nord-Est: **1,20**

1,00 -

Ovest: **1,10** Est: **1,15**

Sud-Ovest: **1,05** Sud-Est: **1,10**

Sud: 1,00

RIASSUNTO DISPERSIONI DEI LOCALI

Opzioni di calcolo:

Metodologia di calcolo *Vicini presenti*

Coefficiente di sicurezza adottato 1,00 -

Zona 1 - Zona climatizzata fabbisogno di potenza dei locali

Loc	Descrizione	θi [°C]	n [1/h]	Ф _{tr} [W]	Ф _{ve} [W]	Φ _{rh} [W]	Ф _н [W]	Ф _{hl sic} [W]
1	Ripostiglio sotto scala	20,0	0,69	522	93	116	732	<i>732</i>
2	Bagno	20,0	8,00	40	114	32	187	187
3	Bagno	20,0	8,00	32	114	32	178	178
6	Co-working	20,0	0,79	11235	908	1495	13638	13638
8	Bagno disabili	20,0	8,00	683	192	54	930	930
10	Ufficio	20,0	0,69	1642	80	262	1984	1984
11	Antibagno	20,0	8,00	594	887	95	1576	1576

Totale: 14749 2388 2087 19224 19224

Totale Edifico: 14749 2388 2087 19224 19224

Legenda simboli

θi Temperatura interna del locale

n Ricambio d'aria del locale

 $\begin{array}{ll} \Phi_{tr} & \quad \text{Potenza dispersa per trasmissione} \\ \Phi_{ve} & \quad \text{Potenza dispersa per ventilazione} \\ \Phi_{rh} & \quad \text{Potenza dispersa per intermittenza} \end{array}$

 $\Phi_{hl} \qquad \quad \text{Potenza totale dispersa}$

 $\Phi_{hl \, sic}$ Potenza totale moltiplicata per il coefficiente di sicurezza

FABBISOGNO DI ENERGIA UTILE INVERNALE secondo UNI EN ISO 13790 e UNI TS 11300-1

Dati climatici della località:

Località Prato
Provincia Prato

Altitudine s.l.m. 61 m
Gradi giorno 1668
Zona climatica D
Temperatura esterna di progetto 0,0 °C

Irradiazione solare giornaliera media mensile:

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m²	1,7	2,6	4,0	5,6	8,1	10,3	10,0	7,3	4,7	3,0	1,9	1,3
Nord-Est	MJ/m²	1,9	3,5	5,8	8,0	11,0	13,2	13,2	11,0	7,3	4,2	2,3	1,4
Est	MJ/m²	4,8	7,2	9,1	10,7	13,4	15,3	15,8	14,5	11,0	7,4	5,5	4,0
Sud-Est	MJ/m²	8,7	10,9	11,2	11,2	12,4	13,4	14,0	14,3	12,6	10,2	9,5	<i>7,</i> 9
Sud	MJ/m²	11,3	13,1	11,7	10,1	10,1	10,5	11,1	12,0	12,2	11,5	12,1	10,4
Sud-Ovest	MJ/m²	8,7	10,9	11,2	11,2	12,4	13,4	14,0	14,3	12,6	10,2	9,5	7,9
Ovest	MJ/m²	4,8	7,2	9,1	10,7	13,4	15,3	15,8	14,5	11,0	7,4	5,5	4,0
Nord-Ovest	MJ/m²	1,9	3,5	5,8	8,0	11,0	13,2	13,2	11,0	7,3	4,2	2,3	1,4
Orizz. Diffusa	MJ/m²	2,2	3,4	5,5	7,2	8,7	9,9	9,6	8,0	6,1	4,1	2,4	1,6
Orizz. Diretta	MJ/m²	3,5	5,8	7,2	8,7	11,9	14,1	14,9	13,6	9,5	5,8	4,3	3,0

Zona 1 : Zona climatizzata

Temperature esterne medie e numero di giorni nella stagione considerata:

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	6,7	8,0	10,4	12,4		-	-	-		-	11,0	6,9
Nº giorni	-	31	28	31	15	-	-	-	-		-	30	31

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti

Stagione di calcolo Convenzionale dal 01 al 15 aprile novembre

Durata della stagione 166 giorni

Dati geometrici:

Superficie in pianta netta	104,36	m^2
Superficie esterna lorda	<i>532,95</i>	m^2
Volume netto	<i>559,18</i>	m^3
Volume lordo	729,23	m^3
Rapporto S/V	0,73	m^{-1}

FABBISOGNO DI ENERGIA UTILE STAGIONE INVERNALE Sommario perdite e apporti

Zona 1 : Zona climatizzata

Categoria DPR 412/93	E.2	-	Superficie esterna	<i>532,95</i>	m^2
Superficie utile	104,36	m^2	Volume lordo	729,23	m^3
Volume netto	559,18	m^3	Rapporto S/V	0,73	m ⁻¹
Temperatura interna	20,0	°C	Capacità termica specifica	165	kJ/m²K
Apporti interni	6,00	W/m²	Superficie totale	<i>532,97</i>	m^2

Dispersioni, apporti e fabbisogno di energia utile:

Mese	Q _{H,tr} [kWh]	Q _{H,r} [kWh]	Q _{H,ve} [kWh]	Q _{н,ht} [kWh] _t	Q _{sol,k,w} [kWh]	Q _{int} [kWh]	Q _{gn} [kWh]	т [h]	η и, н [-]	Q _{H,nd} [kWh]
Novembre	<i>3079</i>	978	566	4623	271	451	722	33,7	0,998	3903
Dicembre	<i>5397</i>	974	852	7222	183	466	649	33,7	1,000	6573
Gennaio	5349	1187	865	7401	237	466	703	33,7	1,000	6698
Febbraio	3890	1079	<i>705</i>	5674	361	421	<i>782</i>	33,7	0,999	4893
Marzo	2830	1166	624	4619	608	466	1074	33,7	0,993	<i>3553</i>
Aprile	761	547	239	1547	397	225	622	33,7	0,968	945

Totali 21306 5930 3851 31087 2057 2495 4552 26565

Legenda simboli

 $Q_{H,tr}$ Energia dispersa per trasmissione dedotti gli apporti solari diretti attravesto le strutture opache $(Q_{sol,k,H})$

 $\begin{array}{ll} Q_{\text{H,r}} & \text{Energia dispersa per extraflusso} \\ Q_{\text{H,ve}} & \text{Energia dispersa per ventilazione} \\ Q_{\text{H,ht}} & \text{Totale energia dispersa} = Q_{\text{H,tr}} + Q_{\text{H,ve}} \end{array}$

 $Q_{\text{sol},k,w} \qquad \quad \text{Apporti solari attraverso gli elementi finestrati}$

Q_{int} Apporti interni

 Q_{gn} Totale apporti gratuiti = Q_{sol} + Q_{int}

 $\begin{array}{ll} Q_{\text{H,nd}} & & \text{Energia utile} \\ \tau & & \text{Costante di tempo} \end{array}$

FABBISOGNO DI ENERGIA UTILE ESTIVA secondo UNI EN ISO 13790 e UNI TS 11300-1

Dati climatici della località:

Località Prato
Provincia Prato

Altitudine s.l.m. 61 m
Gradi giorno 1668
Zona climatica D
Temperatura esterna di progetto 0,0 °C

Irradiazione solare giornaliera media mensile:

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m²	1,7	2,6	4,0	5,6	8,1	10,3	10,0	7,3	4,7	3,0	1,9	1,3
Nord-Est	MJ/m²	1,9	3,5	5,8	8,0	11,0	13,2	13,2	11,0	7,3	4,2	2,3	1,4
Est	MJ/m²	4,8	7,2	9,1	10,7	13,4	15,3	15,8	14,5	11,0	7,4	5,5	4,0
Sud-Est	MJ/m²	8,7	10,9	11,2	11,2	12,4	13,4	14,0	14,3	12,6	10,2	9,5	<i>7,</i> 9
Sud	MJ/m²	11,3	13,1	11,7	10,1	10,1	10,5	11,1	12,0	12,2	11,5	12,1	10,4
Sud-Ovest	MJ/m²	8,7	10,9	11,2	11,2	12,4	13,4	14,0	14,3	12,6	10,2	9,5	7,9
Ovest	MJ/m²	4,8	7,2	9,1	10,7	13,4	15,3	15,8	14,5	11,0	7,4	5,5	4,0
Nord-Ovest	MJ/m²	1,9	3,5	5,8	8,0	11,0	13,2	13,2	11,0	7,3	4,2	2,3	1,4
Orizz. Diffusa	MJ/m²	2,2	3,4	5,5	7,2	8,7	9,9	9,6	8,0	6,1	4,1	2,4	1,6
Orizz. Diretta	MJ/m²	3,5	5,8	7,2	8,7	11,9	14,1	14,9	13,6	9,5	5,8	4,3	3,0

Zona 1 : Zona climatizzata

Temperature esterne medie e numero di giorni nella stagione considerata:

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	-	-	-	14,8	18,2	21,7	24,5	24,6	19,8	17,6	-	-
N° giorni	-	-	-	-	10	31	30	31	31	30	4	-	-

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti

Stagione di calcolo **Reale** dal **21 aprile** al **04 ottobre**

Durata della stagione 167 giorni

Dati geometrici:

Superficie in pianta netta	104,36	m^2
Superficie esterna lorda	<i>532,95</i>	m^2
Volume netto	<i>559,18</i>	m^3
Volume lordo	729,23	m^3
Rapporto S/V	0,73	m ⁻¹

FABBISOGNO DI ENERGIA UTILE STAGIONE ESTIVA Sommario perdite e apporti

Zona 1 : Zona climatizzata

Categoria DPR 412/93	E.2	-	Superficie esterna	<i>532,95</i>	m^2
Superficie utile	104,36	m²	Volume lordo	729,23	m^3
Volume netto	<i>559,18</i>	m^3	Rapporto S/V	0,73	m ⁻¹
Temperatura interna	26,0	°C	Capacità termica specifica	165	kJ/m²K
Apporti interni	6,00	W/m ²	Superficie totale	<i>532,97</i>	m²

Dispersioni, apporti e fabbisogno di energia utile:

Mese	Q _{C,tr} [kWh]	Q _{C,r} [kWh]	Q _{C,ve} [kWh]	Q _{C,ht} [kWh] _t	Q _{sol,k,w} [kWh]	Q _{int} [kWh]	Q _{gn} [kWh]	т [h]	η _{u, c} [-]	Q _{C,nd} [kWh]
Aprile	1057	434	234	1725	265	150	415	33,7	0,241	0
Maggio	1172	1250	<i>507</i>	2929	1092	466	1558	33,7	0,530	5
Giugno	-830	1325	271	<i>7</i> 66	1239	451	1690	33,7	0,999	925
Luglio	-2261	1665	98	-498	1281	466	1747	0,0	1,000	2245
Agosto	-2038	1619	91	-327	1092	466	1558	0,0	1,000	1886
Settembre	854	1129	390	2373	<i>7</i> 29	451	1180	33,7	0,496	3
Ottobre	333	131	71	535	58	60	118	33,7	0,220	0

Totali -1713 7554 1662 7502 5756 2510 8266 5064

Legenda simboli

Q_{C,tr} Energia dispersa per trasmissione dedotti gli apporti solari diretti attravesto le strutture opache (Q_{sol,k,C})

 $Q_{\text{C,r}}$ Energia dispersa per extraflusso $Q_{\text{C,ve}}$ Energia dispersa per ventilazione $Q_{\text{C,ht}}$ Totale energia dispersa = $Q_{\text{C,tr}} + Q_{\text{C,ve}}$

 $Q_{\text{sol},k,w}$ Apporti solari attraverso gli elementi finestrati

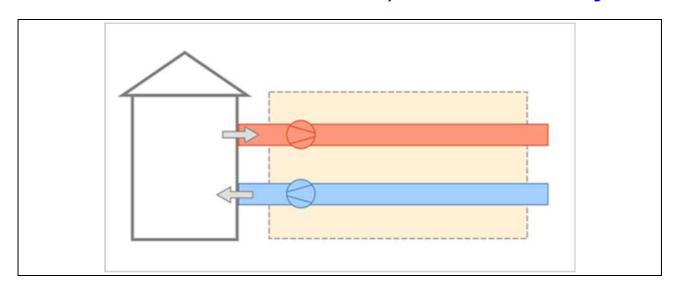
Q_{int} Apporti interni

 $Q_{\text{gn}} \qquad \qquad \text{Totale apporti gratuiti} = Q_{\text{sol}} + Q_{\text{int}}$

 $Q_{C,nd}$ Energia utile τ Costante di tempo

 $\eta_{\text{u, C}}$ Fattore di utilizzazione delle dispersioni termiche

FABBISOGNO DI ENERGIA PRIMARIA secondo UNI/TS 11300-2 e UNI/TS 11300-4

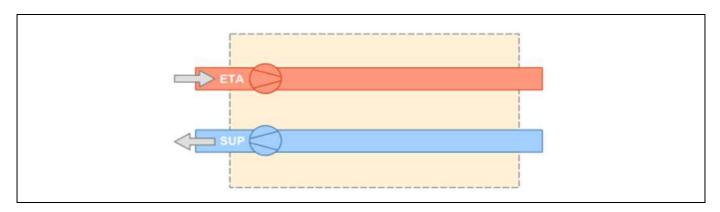

SERVIZIO RISCALDAMENTO (impianto aeraulico)

Zona 1 : Zona climatizzata

Caratteristiche impianto aeraulico:

Tipo di impianto Ventilazione meccanica bilanciata

Ventilazione puntuale a parete per locali Co-Working e Dispositivi presenti Ufficio. Ventilatori per estrazione forzata servizi igienici.


<u>Dati per il calcolo della ventilazione meccanica effettiva</u>:

Ricambi d'aria a 50 Pa	n ₅₀	1	h ⁻¹
Coefficiente di esposizione al vento	е	0,04	-
Coefficiente di esposizione al vento	f	15,00	-
Fattore di efficienza della regolazione	$FC_{ve,H}$	1,00	-
Ore di funzionamento dell'impianto	hf	8,00	-

Portate dei locali

Zona	Nr.	Descrizione locale	Tipologia	q _{ve,sup} [m³/h]	q _{ve,ext} [m³/h]	q _{ve,0} [m³/h]
1	2	Bagno	0,00	45,08	45,08	
1	3	Bagno	Estrazione	0,00	45,07	45,07
1	6	Co-working	Estrazione + Immissione	358,44	358,44	358,44
1	8	Bagno disabili	Estrazione	0,00	<i>75,89</i>	<i>75,</i> 89
1	! 10 Ufficio		Estrazione + Immissione	31,46	31,46	31,46
			389,90	555,93	555,93	

Caratteristiche dei condotti

Condotto di estrazione dagli ambienti (ETA):

Temperatura di estrazione da ambienti **20,0** °C

Potenza elettrica dei ventilatori **110** W

Portata del condotto **555,93** m³/h

Condotto di immissione negli ambienti (SUP):

Temperatura di immissione in ambienti **20,0** °C

Potenza elettrica dei ventilatori **110** W

Portata del condotto **389,90** m³/h

Zona 1 : Zona climatizzata

Modalità di funzionamento

Circuito Riscaldamento Zona climatizzata

Intermittenza

Regime di funzionamento Continuo

SERVIZIO RISCALDAMENTO

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{H,e}	96,3	%
Rendimento di regolazione	η _{H,rg}	95,0	%
Rendimento di distribuzione utenza	η _{H,du}	99,1	%
Rendimento di generazione (risp. a en. pr. non rinn.)	η _{H,gen,p,nren}	214,7	%
Rendimento di generazione (risp. a en. pr. totale)	η _{H,gen,p,tot}	75,1	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	$\eta_{H,g,p,nren}$	196,4	%
Rendimento globale medio stagionale (risp. a en. pr. totale)	$\eta_{H,g,p,tot}$	70,6	%

Dettaglio rendimenti dei singoli generatori:

Generatore	η _{H,gen,ut}	η _{H,gen,p,nren}	η _{H,gen,p,tot}
	[%]	[%]	[%]
Pompa di calore - secondo UNI/TS 11300-4	499,0	255,9	77,8

Rendimento di generazione mensile noto 100,0 51,3 41,3	Rendimento di generazione mensile noto	100,0	<i>51,3</i>	41,3
--	--	-------	-------------	------

 $\eta_{\text{H,gen,ut}}$ Rendimento di generazione rispetto all'energia utile

η_{H,gen,p,nren} Rendimento di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H,gen,p,tot}}$ Rendimento di generazione rispetto all'energia primaria totale

Dati per circuito

Circuito Riscaldamento Zona climatizzata

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione **Bocchette in sistemi ad aria calda**

Potenza nominale dei corpi scaldanti **20700** W Fabbisogni elettrici **280** W Rendimento di emissione **95,0** %

Caratteristiche sottosistema di regolazione:

Tipo Solo per singolo ambiente
Caratteristiche P banda proporzionale 2 °C

Rendimento di regolazione 95,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Tipo di impianto Autonomo, edificio condominiale
Posizione impianto Impianto a piano intermedio

Posizione tubazioni -

Isolamento tubazioni Isolamento con spessori conformi alle prescrizioni del

DPR n. 412/93

Numero di piani

Fattore di correzione

Rendimento di distribuzione utenza

99,0 %

Fabbisogni elettrici

0 W

Dati per circuiti ad integrazione

1 - Integrazione 1 - Rendimenti noti mensili

Percentuale di copertura del fabbisogno di energia utile 100,0 %

<u>Locali serviti dal sistema ad integrazione</u> (Zona 1 : **Zona climatizzata**)

8 - Bagno disabili

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione

Potenza nominale dei corpi scaldanti **876** W Fabbisogni elettrici **0** W

Rendimento di emissione 98,0 %

Caratteristiche sottosistema di regolazione:

Tipo Solo per singolo ambiente
Caratteristiche P banda proporzionale 2 °C

Rendimento di regolazione 95,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Tipo di impianto Autonomo, edificio condominiale
Posizione impianto Impianto a piano intermedio

Posizione tubazioni -

Isolamento tubazioni Isolamento con spessori conformi alle prescrizioni del

DPR n. 412/93

Numero di piani -

Fattore di correzione 1,00

Rendimento di distribuzione utenza 100,0 %

Fabbisogni elettrici 0 W

CENTRALE TERMICA

Elenco sistemi di generazione in centrale termica:

	Priorità	Tipo di generatore	Metodo di calcolo
I	1	Pompa di calore	secondo UNI/TS 11300-4

Modalità di funzionamento Contemporaneo

Elenco sistemi ad integrazione:

Numero	Tipo di integrazione
1	Integrazione 1 - Rendimenti noti mensili

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio **Riscaldamento**Tipo di generatore **Pompa di calore**

Metodo di calcolo secondo UNI/TS 11300-4

Marca/Serie/Modello HITACHI - RAS-8FSXNSE o equivalente

Tipo di pompa di calore *Elettrica*

Temperatura di disattivazione $\theta_{H,off}$ 20,0 °C (per riscaldamento)

Sorgente fredda Aria esterna

Temperatura di funzionamento (cut-off) minima -20,0 °C

massima **15,0** °C

Temperatura di funzionamento (cut-off) minima 15,0 °C

massima **27,0** °C

Temperatura della sorgente calda (riscaldamento)

25,0 °C

Prestazioni dichiarate:

Coefficiente di prestazione COP

Temperatura sorgente	Temperatura sorgente calda θ_c [°C]				
fredda θ _f [°C]	20	-	-		
-7	3,48	-	-		
2	4,25	-	-		
7	4,75	-	-		
12	<i>5,35</i>	-	-		

Potenza utile Pu [kW]

Temperatura sorgente	Temperatura sorgente calda θ_c [°C]				
fredda θ _f [°C]	20	-	-		
-7	18,02	-	-		
2	22,46	-	-		
7	25,00	-	-		
12	<i>25,53</i>	-	-		

Potenza assorbita Pass [kW]

Temperatura sorgente	Temperatura sorgente calda θ _c [°C]					
fredda θ _f [°C]	20	-	•			
-7	5,18	-	-			
2	5,28	-	-			
7	<i>5,26</i>	-	-			
12	4,77	-	-			

Fattori correttivi della pompa di calore:

Potenza di progetto Pdes (a -10°C) 18,20 kW

Condizioni di parzializzazione	Α	В	С	D
Temperatura di riferimento [°C]	-7	2	7	12
Fattore di carico climatico (PLR) [%]	88	54	35	15
Potenza DC a pieno carico [kW]	16,10	9,88	6,40	7,30
COP a carico parziale	2,51	3,68	7,26	7,50
COP a pieno carico	3,48	4,25	4,75	5,35
Fattore di carico CR [-]	1,00	0,99	1,00	0,37
Fattore correttivo fCOP [-]	1,00	0,87	1,53	1,40

Fabbisogni elettrici:

Potenza elettrica degli ausiliari indipendenti

0 W

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_p 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

SISTEMI AD INTEGRAZIONE

1 - Integrazione 1 - Rendimenti noti mensili

Modalità di funzionamento del sistema ad integrazione:

Continuato 24 ore giornaliere

Dati generali:

Servizio Riscaldamento

Tipo di generatore Scaldasalviette elettrico

Metodo di calcolo -

Potenza utile nominale $\Phi_{gn,Pn}$ 0,93 kW

Rendimento mensile di generazione η_{gn}

Gen	Febb	Mar	Apr	Mag	Giu	Lug	Ago	Sett	Ott	Nov	Dic
100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_{p} 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio riscaldamento

Zona 1 : Zona climatizzata

Fabbisogni termici ed elettrici

			Fabbisogni termici							
Mese	99	Q _{н,nd} [kWh]	Q _{H,sys,out} [kWh]	Q' _{H,sys,out} [kWh]	Q _{H,sys,out,int}	Q _{H,sys,out,cont} [kWh]	Q _{H,sys,out,corr} [kWh]	Q _{H,gen,out} [kWh]	Q _{H,gen,in} [kWh]	
gennaio	31	6356	6066	6044	6044	6044	6044	6678	1405	
febbraio	28	4643	4407	4387	4387	4387	4387	4847	969	
marzo	31	3371	3162	3140	3140	3140	3140	3469	632	
aprile	15	896	817	807	807	807	807	891	142	
maggio	-	-	-	-	-	-	-	-	-	
giugno	-	-	-	-	-	-	-	-	-	
luglio	-	-	-	-	-	-	-	-	-	

agosto	-	-	-	-	-	-	-	-	-
settembre	-	-	-	-	-	-	-	-	-
ottobre	-	-	-	-	-	-	-	-	-
novembre	30	3703	3513	3492	3492	3492	3492	3858	712
dicembre	31	6238	5952	5930	5930	5930	5930	6552	1362
TOTALI	166	25208	23916	23800	23800	23800	23800	26296	5222

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,nd} Fabbisogno di energia termica utile del fabbricato (ventilazione naturale) Q_{H,sys,out} Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)

Q'_{H,sys,out} Fabbisogno ideale netto

 $\begin{array}{lll} Q_{H,sys,out,int} & Fabbisogno \ corretto \ per \ intermittenza \\ Q_{H,sys,out,cont} & Fabbisogno \ corretto \ per \ contabilizzazione \\ Q_{H,sys,out,corr} & Fabbisogno \ corretto \ per \ ulteriori \ fattori \\ Q_{H,gen,out} & Fabbisogno \ in \ uscita \ dalla \ generazione \\ Q_{H,gen,in} & Fabbisogno \ in \ ingresso \ alla \ generazione \end{array}$

			Fabbisogr	ni elettrici	
Mese	99	Q _{H,em,aux} [kWh]	Q _{H,du,aux} [kWh]	Q _{H,dp,aux} [kWh]	Q _{H,gen,aux} [kWh]
gennaio	31	82	0	0	0
febbraio	28	59	0	0	0
marzo	31	42	0	0	0
aprile	15	11	0	0	0
maggio	-	-		-	-
giugno	-	-	-	-	-
luglio	-	-	-	-	-
agosto	-	-	-	-	-
settembre				-	-
ottobre	-	-	-	-	-
novembre	30	47	0	0	0
dicembre	31	80	0	0	0
TOTALI	166	322	0	0	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,em,aux} Fabbisogno elettrico ausiliari emissione

Q_{H,du,aux} Fabbisogno elettrico ausiliari distribuzione di utenza Q_{H,dp,aux} Fabbisogno elettrico ausiliari distribuzione primaria Q_{H,gen,aux} Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	η н,гд [%]	η н,а [%]	η _{н,s} [%]	η н,dp [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot} [%]	η _{Η,g,p,nren} [%]	η н,ց,р,tot [%]
gennaio	31	95,0	99,0	100,0	100,0	243,8	76,4	219,3	71,1
febbraio	28	95,0	99,0	100,0	100,0	256,5	77,9	231,5	73,0
marzo	31	95,0	99,0	100,0	100,0	281,6	81,9	256,4	77,7
aprile	15	95,0	99,0	100,0	100,0	320,9	89,7	299,7	87,9
maggio	1				-	-			-
giugno	1				-	-			-
luglio	1	-	1	1	1	-	1	1	-
agosto	1	1	-	1	1	1	1	1	-
settembre	-	-	-	-	-	-	-	-	-
ottobre	-	-	-	-	-	-	-	-	-
novembre	30	95,0	99,0	100,0	100,0	277,8	81,2	250,1	76,1

dicembre	31	95,0	99,0	100,0	100,0	246,7	76,8	221,8	71,5
----------	----	------	------	-------	-------	-------	------	-------	------

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $\begin{array}{ll} \eta_{\text{H,rg}} & \text{Rendimento mensile di regolazione} \\ \eta_{\text{H,d}} & \text{Rendimento mensile di distribuzione} \\ \eta_{\text{H,s}} & \text{Rendimento mensile di accumulo} \end{array}$

η_{H,dp} Rendimento mensile di distribuzione primaria

 $\eta_{H,gen,p,nren}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{H,gen,p,tot}$ Rendimento mensile di generazione rispetto all'energia primaria totale

 $\eta_{H,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

 $\eta_{H,g,p,tot}$ Rendimento globale medio mensile rispetto all'energia primaria totale

<u>Dettagli generatore</u>: 1 - Pompa di calore

Mese	99	Q _{H,gn,out} [kWh]	Q _{H,gn,in} [kWh]	η _{Η,gen,ut} [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot} [%]	Combustibile [kWh]
gennaio	31	6678	1405	475,3	243,8	76,4	0
febbraio	28	4847	969	500,1	256,5	77,9	0
marzo	31	3388	632	536,4	275,1	80,0	0
aprile	15	811	142	569,5	292,1	81,7	0
maggio	-	-	-	-	-	-	-
giugno	-	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-
agosto	-	-	-	-	-	-	-
settembre	-	-	-	-	-	-	-
ottobre	-	-	-	-	-	-	-
novembre	30	3784	712	531,4	272,5	79,7	0
dicembre	31	6552	1362	481,0	246,7	76,8	0

Mese	99	COP [-]
gennaio	31	4,75
febbraio	28	5,00
marzo	31	5,36
aprile	15	5,70
maggio	1	ı
giugno	1	1
luglio	1	1
agosto	-	-
settembre	-	-
ottobre	-	-
novembre	30	5,31
dicembre	31	4,81

Legenda simboli

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ riscaldamento \\ Q_{H,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ riscaldamento \\ Q_{H,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ riscaldamento \\ \eta_{H,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

 $\eta_{H,gen,p,nren}$ Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile

η_{H,gen,p,tot} Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile

COP Coefficiente di effetto utile medio mensile

<u>Dettagli sistema ad integrazione</u>: 1 - Rendimenti noti mensili

Mese	gg	Q _{H,gn,out}	Q _{H,gn,in}	η H,gen,ut	η _{H,gen,p,nren}	η _{H,gen,p,tot}	Combustibile
------	----	-----------------------	----------------------	-------------------	---------------------------	--------------------------	--------------

		[kWh]	[kWh]	[%]	[%]	[%]	[kWh]
gennaio	31	353	353	100,0	51,3	41,3	0
febbraio	28	256	256	100,0	51,3	41,3	0
marzo	31	183	183	100,0	51,3	41,3	0
aprile	15	47	47	100,0	51,3	41,3	0
maggio	-	-	-	-	1	1	-
giugno	-	-	-	-	-	1	-
luglio	1	-	-	-	1	1	-
agosto	1	-	-	-	1	1	-
settembre	-	-	-	-	-	-	-
ottobre	-	-	-	-	-	-	-
novembre	30	204	204	100,0	51,3	41,3	0
dicembre	31	347	347	100,0	51,3	41,3	0

Mese	99	FC [-]
gennaio	31	0,510
febbraio	28	0,410
marzo	31	0,265
aprile	15	0,141
maggio	-	1
giugno	-	1
luglio	-	1
agosto	-	1
settembre	-	-
ottobre	-	-
novembre	30	0,305
dicembre	31	0,501

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ riscaldamento \\ Q_{H,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ riscaldamento \\ Q_{H,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ riscaldamento \\ \eta_{H,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

 $\eta_{\text{H},\text{gen},p,\text{nren}} \qquad \qquad \text{Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile}$

η_{H,gen,p,tot} Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile

FC Fattore di carico

Fabbisogno di energia primaria impianto idronico

Mese	99	Q _{H,gn,in} [kWh]	Q _{н,аих} [kWh]	Q _{н,р,nren} [kWh]	Q _{н,p,tot} [kWh]
gennaio	31	1405	1487	2899	8938
febbraio	28	969	1029	2006	6365
marzo	31	632	674	1315	4341
aprile	15	142	153	299	1020
maggio	-	-	-	-	-
giugno	-	-	-	-	-
luglio	-	-	-	-	-
agosto	-	-	-	-	-
settembre	-	-	-	-	-
ottobre	-	-	-	-	-
novembre	30	712	<i>759</i>	1481	4864

ING. FERRARA ROBERTO

VIA SAN CRESCI, 85 - 50013 CAMPI BISENZIO (FI)

dicembre	31	1362	1442	2812	8729
TOTALI	166	5222	<i>5544</i>	10811	34255

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $Q_{\text{H},gn,in} \hspace{1.5cm} \text{Energia termica totale in ingresso al sottosistema di generazione per riscaldamento} \\$

 $Q_{\text{H,aux}} \hspace{1.5cm} \text{Fabbisogno elettrico totale per riscaldamento} \\$

Q_{H,p,nren} Fabbisogno di energia primaria non rinnovabile per riscaldamento

 $Q_{H,p,tot}$ Fabbisogno di energia primaria totale per riscaldamento

Zona 1 : Zona climatizzata

Modalità di funzionamento

SERVIZIO ACQUA CALDA SANITARIA

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di erogazione	η _{w,er}	100,0	%
Rendimento di distribuzione utenza	η _{w,du}	92,6	%
Rendimento di accumulo	η _{w,s}	81,9	%
Rendimento di generazione (risp. a en. utile)	η _{W,gen,ut}	301,7	%
Rendimento di generazione (risp. a en. pr. non rinn.)	ηw,gen,p,nren	154,7	%
Rendimento di generazione (risp. a en. pr. non tot.)	ηw,gen,p,tot	68,0	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	ηw,g,p,nren	117,4	%
Rendimento globale medio stagionale (risp. a en. pr. tot.)	η _{W,g,p,tot}	51,6	%

Dati per zona

Zona: Zona climatizzata

Fabbisogno giornaliero di acqua sanitaria [1/g]:

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Ī	110	110	110	110	110	110	110	110	110	110	110	110

Categoria DPR 412/93 E.2

Temperatura di erogazione 40,0 °C

Temperatura di alimentazione [°C]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
15,1	15,1	15,1	15,1	15,1	15,1	15,1	15,1	15,1	15,1	15,1	15,1

Superficie utile **104,36** m²

Caratteristiche sottosistema di erogazione:

Rendimento di erogazione 100,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Sistemi installati dopo l'entrata in vigore della legge 373/76, rete corrente parzialmente in ambiente climatizzato

Caratteristiche sottosistema di accumulo singolo:

Dispersione termica **0,791** W/K
Temperatura media dell'accumulo **60,0** °C

Ambiente di installazione Interno
Fattore di recupero delle perdite 1,00

Temperatura ambiente installazione 20,0 °C

SOTTOSISTEMA DI GENERAZIONE

Modalità di funzionamento del generatore:

Continuato 24 ore giornaliere

Dati generali:

Servizio Acqua calda sanitaria

Tipo di generatore **Pompa di calore**

Metodo di calcolo secondo UNI/TS 11300-4

Marca/Serie/Modello ARISTON - NUOS EVO A+ 80 L o equivalente

Tipo di pompa di calore *Elettrica*

Sorgente fredda Aria esterna

Temperatura di funzionamento (cut-off) minima -5,0 °C

massima **42,0** °C

Sorgente calda Acqua calda sanitaria

Temperatura di funzionamento (cut-off) minima 15,0 °C

massima **62,0** °C

Temperatura della sorgente calda (acqua sanitaria) 55,0 °C

Prestazioni dichiarate:

Coefficiente di prestazione	COPe	2,6	
Potenza utile	P_{u}	1,20	kW
Potenza elettrica assorbita	P _{ass}	0,46	kW
Temperatura della sorgente fredda	θ_{f}	7	°C
Temperatura della sorgente calda	θ_{c}	<i>53</i>	°C

Fattori correttivi della pompa di calore:

CR	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
Fc	0,00	0,53	0,71	0,81	0,87	0,91	0,94	0,96	0,98	0,99	1,00

Legenda simboli

CR Fattore di carico macchina della pompa di calore

Fc Fattore correttivo della pompa di calore

Fabbisogni elettrici:

Potenza elettrica degli ausiliari indipendenti **0** W

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_p 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio acqua calda sanitaria

Zona 1 : Zona climatizzata

Fabbisogni termici ed elettrici

			Fab	bisogni term	ici		Fabb	oisogni elet	trici
Mese	gg	Qw,sys,out [kWh]	Qw,sys,out,rec [kWh]	Qw,sys,out,cont [kWh]	Qw,gen,out [kWh]	Qw,gen,in [kWh]	Qw,ric,aux [kWh]	Q _{w,dp,aux} [kWh]	Qw,gen,aux [kWh]
gennaio	31	99	99	99	130	52	0	0	0
febbraio	28	89	89	89	118	46	0	0	0
marzo	31	99	99	99	130	48	0	0	0
aprile	30	96	96	96	126	44	0	0	0
maggio	31	99	99	99	130	40	0	0	0
giugno	30	96	96	96	126	35	0	0	0
luglio	31	99	99	99	130	33	0	0	0
agosto	31	99	99	99	130	33	0	0	0
settembre	30	96	96	96	126	<i>37</i>	0	0	0
ottobre	31	99	99	99	130	42	0	0	0
novembre	30	96	96	96	126	46	0	0	0
dicembre	31	99	99	99	130	52	0	0	0
TOTALI	365	1163	1163	1163	1533	508	0	0	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

 $Q_{W,sys,out}$ Fabbisogno ideale per acqua sanitaria

 $Q_{W,sys,out,rec} \hspace{0.5cm} \text{Fabbisogno corretto per recupero di calore dai reflui di scarico delle docce} \\$

 $\begin{array}{ll} Q_{W,sys,out,cont} & Fabbisogno \ corretto \ per \ contabilizzazione \\ Q_{W,gen,out} & Fabbisogno \ in \ uscita \ dalla \ generazione \\ Q_{W,gen,in} & Fabbisogno \ in \ ingresso \ alla \ generazione \\ Q_{W,ric,aux} & Fabbisogno \ elettrico \ ausiliari \ ricircolo \end{array}$

 $Q_{W,dp,aux}$ Fabbisogno elettrico ausiliari distribuzione primaria

Q_{W,gen,aux} Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	ղ w,ժ [%]	η _{w,s} [%]	η _{w,ric} [%]	ղ _{w,dp} [%]	η _{w,gen,p,nren} [%]	η _{w,gen,p,tot} [%]	η _{w,g,p,nren} [%]	η _{w,g,p,tot} [%]
gennaio	31	92,6	81,9	-	-	127,9	61,0	97,0	46,3
febbraio	28	92,6	81,9	-	-	131,3	62,0	99,6	47,0
marzo	31	92,6	81,9	-	-	138,1	63,8	104,7	48,4
aprile	30	92,6	81,9	-	-	146,9	66,1	111,5	50,1
maggio	31	92,6	81,9	-	-	167,4	70,9	127,0	53,8
giugno	30	92,6	81,9	-	-	185,0	74,7	140,3	56,6
luglio	31	92,6	81,9	-	-	202,3	78,0	153,5	59,2
agosto	31	92,6	81,9	-	-	203,8	78,3	154,6	59,4
settembre	30	92,6	81,9	-	-	175,5	72,7	133,2	55,1
ottobre	31	92,6	81,9	-	-	158,2	68,8	120,0	52,2
novembre	30	92,6	81,9	-	-	140,2	64,4	106,4	48,8
dicembre	31	92,6	81,9	-	-	128,4	61,1	97,4	46,4

Legenda simboli

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

 $\begin{array}{ll} \eta_{W,d} & \text{Rendimento mensile di distribuzione} \\ \eta_{W,s} & \text{Rendimento mensile di accumulo} \\ \eta_{W,ric} & \text{Rendimento mensile della rete di ricircolo} \end{array}$

Nw,dp Rendimento mensile di distribuzione primaria

ηw,gen,p,nren Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{W,gen,p,tot}$ Rendimento mensile di generazione rispetto all'energia primaria totale

 $\eta_{W,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

 $\eta_{W,g,p,tot}$ Rendimento globale medio mensile rispetto all'energia primaria totale

<u>Dettagli generatore</u>: 1 - Pompa di calore

Mese	99	Qw,gn,out [kWh]	Qw,gn,in [kWh]	η _{w,gen,ut} [%]	ηw,gen,p,nren [%]	η _{w,gen,p,tot} [%]	Combustibile [kWh]
gennaio	31	130	52	249,4	127,9	61,0	0
febbraio	28	118	46	256,0	131,3	62,0	0
marzo	31	130	48	269,2	138,1	63,8	0
aprile	30	126	44	286,5	146,9	66,1	0
maggio	31	130	40	326,5	167,4	70,9	0
giugno	30	126	35	360,7	185,0	74,7	0
luglio	31	130	33	394,5	202,3	78,0	0
agosto	31	130	33	397,4	203,8	<i>78,3</i>	0
settembre	30	126	37	342,3	175,5	72,7	0
ottobre	31	130	42	308,5	158,2	68,8	0
novembre	30	126	46	273,5	140,2	64,4	0
dicembre	31	130	52	250,3	128,4	61,1	0

Mese	99	COP [-]
gennaio	31	2,49
febbraio	28	2,56
marzo	31	2,69
aprile	30	2,87
maggio	31	3,26
giugno	30	3,61
luglio	31	3,95
agosto	31	3,97
settembre	30	3,42
ottobre	31	3,09
novembre	30	2,73
dicembre	31	2,50

Legenda simboli

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ acqua \ sanitaria \\ Qw_{y,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ acqua \ sanitaria \\ Qw_{y,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ acqua \ sanitaria \\ \eta_{W,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

 $\eta_{W,gen,p,nren}$ Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile

 $\eta_{W,gen,p,tot}$ Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile

COP Coefficiente di effetto utile medio mensile

Fabbisogno di energia primaria impianto acqua calda sanitaria

Mese	99	Qw _{,gn,in} [kWh]	Qw,aux [kWh]	Qw,p,nren [kWh]	Qw,p,tot [kWh]
gennaio	31	52	52	102	213
febbraio	28	46	46	90	190
marzo	31	48	48	94	204
aprile	30	44	44	86	191

maggio	31	40	40	<i>78</i>	184
giugno	30	35	35	68	169
luglio	31	33	33	64	167
agosto	31	33	33	64	166
settembre	30	37	37	72	173
ottobre	31	42	42	82	189
novembre	30	46	46	90	196
dicembre	31	52	52	101	213
TOTALI	365	508	508	991	2255

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

Q_{W,gn,in} Energia termica totale in ingresso al sottosistema di generazione per acqua sanitaria

 $Q_{W,aux}$ Fabbisogno elettrico totale per acqua sanitaria

 $Q_{W,p,nren} \qquad \qquad \text{Fabbisogno di energia primaria non rinnovabile per acqua sanitaria}$

 $Q_{W,p,tot}$ Fabbisogno di energia primaria totale per acqua sanitaria

FABBISOGNO DI ENERGIA PRIMARIA secondo UNI/TS 11300-3

Zona 1 : Zona climatizzata

Modalità di funzionamento dell'impianto:

Continuato

SERVIZIO RAFFRESCAMENTO

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{C,e}	97,0	%
Rendimento di regolazione	η _{C,rg}	96,0	%
Rendimento di distribuzione	η _{C,d}	100,0	%
Rendimento di generazione (risp. a en. utile)	η _{C,gen,ut}	415,0	%
Rendimento di generazione (risp. a en. pr. non rinn.)	η _{C,gen,p,nren}	212,8	%
Rendimento di generazione (risp. a en. pr. non tot.)	$\eta_{C,gen,p,tot}$	171,5	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	$\eta_{C,g,p,nren}$	138,2	%
Rendimento globale medio stagionale (risp. a en. pr. tot.)	η _{C,g,p,tot}	111,4	%

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione

Terminali ad espansione diretta, unità interne sistemi

split, ecc

Fabbisogni elettrici 280 W

Caratteristiche sottosistema di regolazione:

Tipo Controllo singolo ambiente

Caratteristiche Regolazione modulante (banda 2°C)

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio Raffrescamento
Tipo di generatore Pompa di calore

Metodo di calcolo secondo UNI/TS 11300-3

Marca/Serie/Modello HITACHI - RAS-8FSXNSE o equivalente

Tipo di pompa di calore *Elettrica*

Potenza frigorifera nominale $\Phi_{gn,nom}$ **22,40** kW

Sorgente unità esterna Aria

Temperatura bulbo secco aria esterna 32,5 °C

Sorgente unità interna Aria

Temperatura bulbo umido aria 19,0 °C

Prestazioni dichiarate:

Fk [%]	100%	75%	50%	25%	20%	15%	10%	5%	2%	1%
EER [-]	4,15	5,49	9,36	11,93	11,21	10,14	8,71	5,97	3,10	1,67

Legenda simboli

Fk Fattore di carico della pompa di calore EER Prestazione della pompa di calore

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_p 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio raffrescamento

Zona 1 : Zona climatizzata

Fabbisogni termici

Mese	99	Q _{C,nd} [kWh]	Q _{C,sys,out} [kWh]	Q _{C,sys,out,cont} [kWh]	Q _{C,sys,out,corr} [kWh]	Q _{cr} [kWh]	Q _v [kWh]	Q _{C,gen,out} [kWh]	Q _{C,gen,in} [kWh]
gennaio	-	-	-	1	1	-	1	-	-
febbraio	-	-	-	1	1	-	1	-	-
marzo	-		-	-	-			-	-
aprile	13	0	0	0	0	0	0	0	0
maggio	31	5	18	18	18	20	0	20	5
giugno	30	925	1193	1193	1193	1281	304	1585	382
luglio	31	2245	2294	2294	2294	2464	506	2969	716
agosto	31	1886	1927	1927	1927	2069	<i>577</i>	2647	638
settembre	30	3	8	8	8	8	185	193	47
ottobre	7	0	0	0	0	0	0	0	0
novembre	-	-	-	-	-	-	-	-	-
dicembre	-	-	-	-	-	-	-	-	-
TOTALI	173	5064	5440	5440	5440	5842	1572	7414	1787

Legenda simboli

gg Giorni compresi nel periodo di calcolo per raffrescamento

 $\begin{array}{ll} Q_{\text{C,nd}} & \text{Fabbisogno di energia termica utile del fabbricato (ventilazione naturale)} \\ Q_{\text{C,sys,out}} & \text{Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)} \end{array}$

 $\begin{array}{lll} Q_{\text{C,sys,out,cont}} & \text{Fabbisogno corretto per contabilizzazione} \\ Q_{\text{C,sys,out,corr}} & \text{Fabbisogno corretto per ulteriori fattori} \\ Q_{\text{cr}} & \text{Fabbisogno effettivo di energia termica} \\ Q_{\text{V}} & \text{Fabbisogno per il trattamento dell'aria} \\ Q_{\text{C,gen,out}} & \text{Fabbisogno in uscita dalla generazione} \\ Q_{\text{C,gen,in}} & \text{Fabbisogno in ingresso alla generazione} \end{array}$

Fabbisogni elettrici

Mese	99	Q _{C,em,aux} [kWh]	Q _{C,du,aux} [kWh]	Q _{C,dp,aux} [kWh]	Q _{C,gen,aux} [kWh]
gennaio	-	1	1	1	1
febbraio	-	1	1	1	1
marzo	-	1	1	1	1
aprile	13	0	0	0	0
maggio	31	0	0	0	0
giugno	30	20	0	0	0
luglio	31	<i>37</i>	0	0	0
agosto	31	<i>33</i>	0	0	0
settembre	30	2	0	0	0
ottobre	7	0	0	0	0
novembre	-	-	-	-	-
dicembre	-	-	-	-	-
TOTALI	173	93	0	0	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per raffrescamento

Q_{C,em,aux} Fabbisogno elettrico ausiliari emissione

 $\begin{array}{ll} Q_{C,du,aux} & \quad \text{Fabbisogno elettrico ausiliari distribuzione di utenza} \\ Q_{C,dp,aux} & \quad \text{Fabbisogno elettrico ausiliari distribuzione primaria} \end{array}$

 $Q_{\text{C},\text{gen},\text{aux}} \qquad \quad \text{Fabbisogno elettrico ausiliari generazione}$

Dettagli impianto termico

Mese	99	Fk [-]	η _{C,rg} [%]	η _{c,d} [%]	η _{c,s} [%]	η _{C,dp} [%]	η _{C,gen,ut} [%]	η _{C,gen,p,nren} [%]	η _{C,gen,p,tot} [%]	η _{C,g,p,nren} [%]	η _{C,g,p,tot} [%]
gennaio	1	1	1		1	1	-	-	-	1	-
febbraio	-	-	-	1	-	-	-	-	-	-	-
marzo	-	-	-	1	-	-	-	-	-	-	-
aprile	13	0,00	96,0	-	-	-	415,0	212,8	171,5	76,1	61,3
maggio	31	0,00	96,0	-	-	-	415,0	212,8	171,5	55,5	44,8
giugno	30	0,10	96,0		-	-	415,0	212,8	171,5	118,2	95,2
luglio	31	0,18	96,0		-	-	415,0	212,8	171,5	153,0	123,3
agosto	31	0,16	96,0		-	-	415,0	212,8	171,5	144,1	116,1
settembre	30	0,01	96,0		-	-	415,0	212,8	171,5	2,7	2,2
ottobre	7	0,00	96,0		-	-	415,0	212,8	171,5	63,3	51,0
novembre	_	-	-	-	-	-	-	-	-	-	-
dicembre	-	-	-	-	-	-	-	-	-	-	-

Legenda simboli

gg Giorni compresi nel periodo di calcolo per raffrescamento

 $\begin{array}{lll} Fk & \text{Fattore di carico della pompa di calore} \\ \eta_{C,rg} & \text{Rendimento mensile di regolazione} \\ \eta_{C,d} & \text{Rendimento mensile di distribuzione} \\ \eta_{C,s} & \text{Rendimento mensile di accumulo} \end{array}$

 $\eta_{\text{C,dp}}$ Rendimento mensile di distribuzione primaria

 $\eta_{C,gen,ut}$ Rendimento mensile di generazione rispetto all'energia utile

 $\eta_{C,gen,p,nren}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

η_{C,gen,p,tot} Rendimento mensile di generazione rispetto all'energia primaria totale

 $\eta_{C,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

Fabbisogno di energia primaria

Mese	gg	Qc,gn,in [kWh]	Q _{c,aux} [kWh]	Qc,p,nren [kWh]	Qc,p,tot [kWh]	Combustibile [kWh]
gennaio	-	-	-	-	-	-
febbraio	-	-	-	-	-	-
marzo	-	-	-	-	-	-
aprile	13	0	0	0	0	0
maggio	31	5	5	10	12	0
giugno	30	382	402	783	972	0
luglio	31	716	<i>753</i>	1468	1821	0
agosto	31	638	671	1308	1624	0
settembre	30	47	49	96	119	0
ottobre	7	0	0	0	0	0
novembre	-	-	-	-	-	-
dicembre	-	-	-	-	-	-
TOTALI	173	1787	1879	3664	4548	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per raffrescamento

 $Q_{C,gn,in}$ Energia termica in ingresso al sottosistema di generazione per raffrescamento

Q_{C,aux} Fabbisogno elettrico totale per raffrescamento

Q_{C,p,nren} Fabbisogno di energia primaria non rinnovabile per raffrescamento

Q_{C,p,tot} Fabbisogno di energia primaria totale per raffrescamento

FABBISOGNO DI ENERGIA PRIMARIA ILLUMINAZIONE

secondo UNI/TS 11300-2

Zona 1 - Zona climatizzata

<u>Illuminazione artificiale interna dei locali climatizzati</u>:

Locale: 10 - Ufficio	
Potenza elettrica installata dei dispositivi luminosi 16	o W
Livello di illuminamento E Medi	0
Tempo di operatività durante il giorno 225	o h/anno
Tempo di operatività durante la notte	o h/anno
Fattore dipendente dal tipo di controllo dell'illuminazione Foc 1,0	0 -
Fattore di assenza medio F _A 0,1	0 -
Fattore di manutenzione MF 0,8	0 -
Area che beneficia dell'illuminazione naturale A _d 13,1	2 m ²
Illuminazione per dispositivi di controllo e di emergenza :	
Fabbisogno per i comandi di illuminazione automatici 5,0	kWh _{el} /(m²anno)
Fabbisogno per l'illuminazione di emergenza	kWh _{el} /(m²anno)
Locale: 11 - Antibagno	
Potenza elettrica installata dei dispositivi luminosi 3	8 W
Livello di illuminamento E Medi	0
Tempo di operatività durante il giorno 225	o h/anno
Tempo di operatività durante la notte	0 h/anno
Fattore dipendente dal tipo di controllo dell'illuminazione F _{OC} 0,9	0 -
Fattore di assenza medio F _A 0,9	0 -
Fattore di manutenzione MF 0,8	0 -
Area che beneficia dell'illuminazione naturale A _d 4,7	5 m ²
Illuminazione per dispositivi di controllo e di emergenza :	
Fabbisogno per i comandi di illuminazione automatici 5,0	o kWh _{el} /(m²anno)
Fabbisogno per l'illuminazione di emergenza 1,0	o kWh _{el} /(m²anno)
Locale: 1 - Ripostiglio sotto scala	
Potenza elettrica installata dei dispositivi luminosi 4	1 W
Livello di illuminamento E Medi	0
Tempo di operatività durante il giorno 225	o h/anno
Tempo di operatività durante la notte	0 h/anno
Fattore dipendente dal tipo di controllo dell'illuminazione Foc 1,0	o -
Fattore di assenza medio F _A 0,1	0 -

VIA SAN CRESCI, 85 - 50013 CAMPI BISENZIO (FI)		
Fattore di manutenzione MF	0,80	-
Area che beneficia dell'illuminazione naturale A_{d}	5,81	m^2
Illuminazione per dispositivi di controllo e di emergenza :		
Fabbisogno per i comandi di illuminazione automatici	5,00	Wh. //m²anno)
	•	kWh _{el} /(m ² anno)
Fabbisogno per l'illuminazione di emergenza	1,00	kWh _{el} /(m²anno)
Locale: 2 - Bagno		
Potenza elettrica installata dei dispositivi luminosi	19	W
Livello di illuminamento E	Medio	
Tempo di operatività durante il giorno	2250	h/anno
Tempo di operatività durante la notte	250	h/anno
Fattore dipendente dal tipo di controllo dell'illuminazione Foc	1,00	-
Fattore di assenza medio F _A	0,90	-
Fattore di manutenzione MF	0,80	-
Area che beneficia dell'illuminazione naturale A _d	1,61	m^2
Illuminazione per dispositivi di controllo e di emergenza :		
Fabbisogno per i comandi di illuminazione automatici	5,00	kWh _{el} /(m²anno)
Fabbisogno per l'illuminazione di emergenza	1,00	kWh _{el} /(m²anno)
Locale: 3 - Bagno		
Potenza elettrica installata dei dispositivi luminosi	19	W
Livello di illuminamento E	Medio	
Tempo di operatività durante il giorno	2250	h/anno
Tempo di operatività durante la notte	250	h/anno
rempo di operatività darante la notte	250	ny annio
Fattore dipendente dal tipo di controllo dell'illuminazione Foc	0,00	-
Fattore di assenza medio F _A	0,00	-
Fattore di manutenzione MF	0,80	-
Area che beneficia dell'illuminazione naturale A_{d}	1,61	m^2
Illuminazione per dispositivi di controllo e di emergenza :		
Fabbisogno per i comandi di illuminazione automatici	5,00	kWh _{el} /(m ² anno)
Fabbisogno per l'illuminazione di emergenza	1,00	kWh _{el} /(m²anno)
Locale: 6 - Co-working		
Potenza elettrica installata dei dispositivi luminosi	800	W
Livello di illuminamento E	Medio	
Tempo di operatività durante il giorno	2250	h/anno
Tempo di operatività durante la notte	250	h/anno
Fathers discondente della di		
Fattore dipendente dal tipo di controllo dell'illuminazione F _{OC}	1,00	-
Fattore di assenza medio F _A	0,00	-
Fattore di manutenzione MF	0,80	-
Area che beneficia dell'illuminazione naturale A _d	74,75	m ²

Illuminazione per dispositivi di controllo e di emergenza :

Fabbisogno per i comandi di illuminazione automatici 5,00 kWh_{el}/(m²anno) Fabbisogno per l'illuminazione di emergenza 1,00 kWh_{el}/(m²anno)

Locale: 8 - Bagno disabili

Potenza elettrica installata dei dispositivi luminosi 19 W

Livello di illuminamento E

Tempo di operatività durante il giorno 2250 h/anno

Tempo di operatività durante la notte 250 h/anno

Fattore dipendente dal tipo di controllo dell'illuminazione F_{OC} 1,00 -

Fattore di assenza medio F_A 0,90 -

Fattore di manutenzione MF 0,80 - Area che beneficia dell'illuminazione naturale A_d 2,71 m^2

Fabbisogno per i comandi di illuminazione automatici 5,00 kWh_{el}/(m²anno)

Fabbisogno per l'illuminazione di emergenza 1,00 kWh_{el}/(m²anno)

FABBISOGNI ILLUMINAZIONE LOCALI NON CLIMATIZZATI

FABBISOGNI SERVIZIO ILLUMINAZIONE

Fabbisogni elettrici per illuminazione dei locali climatizzati

Illuminazione per dispositivi di controllo e di emergenza :

Zona	Locale	Descrizione	Q _{ill,int,a} [kWh _{el}]	$Q_{ill,int,p}$ [kWh _{el}]	$Q_{\rm ill,int}$ [kWh _{el}]
1	10	Ufficio	362	<i>7</i> 9	441
1	11	Antibagno	15	29	44
1	1	Ripostiglio sotto scala	103	35	137
1	2	Bagno	14	10	24
1	3	Bagno	48	10	<i>57</i>
1	6	Co-working	1606	449	2055
1	8	Bagno disabili	14	16	31

Legenda simboli

 $Q_{ill,int,a}$ Fabbisogno di energia elettrica per l'illuminazione artificiale dei locali climatizzati

 $Q_{\text{ill,int,p}}$ Fabbisogno di energia elettrica per dispositivi di controllo e di emergenza $Q_{\text{ill,int}}$ Fabbisogno di energia elettrica totale per l'illuminazione artificiale interna

Fabbisogni mensili per illuminazione

Mese	Giorni	Q _{ill,int,a} [kWh _{el}]	Q _{ill,int,p} [kWh _{el}]	Qill,int,u [kWhel]	Q _{ill,int} [kWh _{el}]	Q _{ill,est} [kWh _{el}]	Qill [kWh _{el}]	Q _{p,ill} [kWh]
Gennaio	31	198	53	0	251	0	251	489
Febbraio	28	171	48	0	219	0	219	427
Marzo	31	180	53	0	233	0	233	455
Aprile	30	171	51	0	222	0	222	433
Maggio	31	175	53	0	228	0	228	445
Giugno	30	169	51	0	220	0	220	430
Luglio	31	174	53	0	228	0	228	444
Agosto	31	175	53	0	228	0	228	445

ING. FERRARA ROBERTO

VIA SAN CRESCI, 85 - 50013 CAMPI BISENZIO (FI)

Settembre	30	174	51	0	226	0	226	440
Ottobre	31	186	53	0	239	0	239	466
Novembre	30	189	51	0	240	0	240	468
Dicembre	31	200	53	0	253	0	253	494
TOTALI		2162	626	0	2788	0	2788	5436

<u>Legenda simboli</u>

Q_{III,int,a} Fabbisogno di energia elettrica per l'illuminazione artificiale dei locali climatizzati

 $Q_{\text{ill,int,p}}$ Fabbisogno di energia elettrica per dispositivi di controllo e di emergenza

 $Q_{ill,int,u} \qquad \qquad \text{Fabbisogno di energia elettrica per l'illuminazione artificiale dei locali non climatizzati}$

 $Q_{\text{ill,int}}$ Fabbisogno di energia elettrica totale per l'illuminazione artificiale interna $Q_{\text{ill,est}}$ Fabbisogno di energia elettrica totale per l'illuminazione artificiale esterna

Q_{iii} Fabbisogno di energia elettrica totale

 $Q_{\text{p,ill}}$ Fabbisogno di energia primaria per il servizio illuminazione

FABBISOGNI ILLUMINAZIONE COMPLESSIVI

Fabbisogni per il servizio illuminazione di ogni zona

Zona	Qill,int,a [kWhel]	Qill,int,p [kWh _{el}]	Qill,int,u [kWhel]	Qill,int [kWhel]	Q _{ill,est} [kWh _{el}]	Qiii [kWh _{el}]	Q _{p,ill} [kWh]
1 - Zona climatizzata	2162	626	0	2788	0	2788	5436
TOTALI	2162	626	0	2788	0	2788	5436

Legenda simboli

Q_{ill,int,a} Fabbisogno di energia elettrica per l'illuminazione artificiale dei locali climatizzati

 $Q_{\text{ill,int,p}}$ Fabbisogno di energia elettrica per dispositivi di controllo e di emergenza

Q_{ill,int,u} Fabbisogno di energia elettrica per l'illuminazione artificiale dei locali non climatizzati

 $\begin{array}{ll} Q_{ill,int} & \quad & \text{Fabbisogno di energia elettrica totale per l'illuminazione artificiale interna} \\ Q_{ill,est} & \quad & \text{Fabbisogno di energia elettrica totale per l'illuminazione artificiale esterna} \end{array}$

Q_{iii} Fabbisogno di energia elettrica totale

 $Q_{\text{p,ill}}$ Fabbisogno di energia primaria per il servizio illuminazione

FABBISOGNI E CONSUMI TOTALI

Edificio : Blocco Ex. Capannone Artigianale	DPR 412/93	E.2	Superficie utile	104,36	m²	
Aitigialiale					1	ı

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	13524	24098	37621	129,59	230,91	360,50
Acqua calda sanitaria	991	1264	2255	9,50	12,11	21,61
Raffrescamento	3664	883	4548	35,11	8,46	43,58
Ventilazione	1253	302	1555	12,00	2,89	14,90
Illuminazione	5436	1310	6747	52,09	12,56	64,65
TOTALE	24868	27857	<i>52725</i>	238,29	266,93	505,23

Vettori energetici ed emissioni di CO₂

Vettore energetico	Consumo	U.M.	CO ₂ [kg/anno]	Servizi
Energia elettrica	12753	kWhel/anno	5866	Riscaldamento, Acqua calda sanitaria, Raffrescamento, Ventilazione, Illuminazione

Zona 1 : Zona climatizzata	DPR 412/93	E.2	Superficie utile	104,36	m ²	
----------------------------	------------	-----	------------------	--------	----------------	--

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	13524	24098	37621	129,59	230,91	360,50
Acqua calda sanitaria	991	1264	2255	9,50	12,11	21,61
Raffrescamento	3664	883	4548	35,11	8,46	43,58
Ventilazione	1253	302	1555	12,00	2,89	14,90
Illuminazione	5436	1310	6747	52,09	12,56	64,65
TOTALE	24868	27857	<i>52725</i>	238,29	266,93	505,23

Vettori energetici ed emissioni di CO₂

Vettore energetico	Consumo	U.M.	CO₂ [kg/anno]	Servizi
Energia elettrica	12753	kWhel/anno	5866	Riscaldamento, Acqua calda sanitaria, Raffrescamento, Ventilazione, Illuminazione

Calcolo dei carichi termici estivi secondo il metodo Carrier - Pizzetti

EDIFICIO Blocco Ex. Capannone Artigianale

INDIRIZZO Piazza dei Macelli 4

COMMITTENTE Comune di prato

INDIRIZZO Piazza del comune 2

COMUNE **Prato**

Opzioni di calcolo adottate:

Coefficiente di correzione solare 1,00

Metodo di calcolo con fattore di accumulo

ING. FERRARA ROBERTO VIA SAN CRESCI, 85 - 50013 CAMPI BISENZIO (FI)

SOMMARIO CARICHI TERMICI nell'ora di massimo carico di ciascun locale

ZONA: 1 Zona climatizzata

Mese: Luglio

Carichi termici nell'ora di massimo carico di ciascun locale:

N.	Descrizione	Ora	Q _{Irr} [W]	Q τr [W]	Q _v [W]	Q _□ [W]	Q _{gl,sen} [W]	Q _{gl,lat} [W]	Q _{gl}
1	Ripostiglio sotto scala	18	0	188	103	196	392	95	487
2	2 Bagno		0	<i>17</i>	32	54	<i>7</i> 6	27	103
3	Bagno	16	0	15	32	54	74	27	102
6	Co-working	16	1214	4921	2593	4245	10354	2619	12973
10	Ufficio	16	67	471	261	443	1019	223	1242
11	Antibagno	18	89	96	84	160	352	77	430
		Totali	1369	5708	3106	5153	12267	3069	15336

Legenda simboli

 $\begin{array}{ll} Q_{Irr} & \quad \text{Carico dovuto all'irraggiamento} \\ Q_{Tr} & \quad \text{Carico dovuto alla trasmissione} \\ Q_{\nu} & \quad \text{Carico dovuto alla ventilazione} \end{array}$

Qc Carichi interni

 $\begin{array}{ll} Q_{\text{gl,lat}} & \quad \text{Carico sensibile globale} \\ Q_{\text{gl,lat}} & \quad \text{Carico latente globale} \end{array}$

Q_{gl} Carico globale

2.4.6 Benessere termico

Il requisito richiesto è quello di garantire il benessere termico e di qualità dell'aria interna prevedendo condizioni conformi almeno alla classe B secondo la UNI EN ISO 7730 in termini di PMV (voto medio previsto) e di PPD (percentuale prevista di insoddisfatti).

Il calcolo viene eseguito utilizzando un profilo orario basato sull'attività svolta nei locali (E.2).

I dati di ingresso implementati all'interno del Software di calcolo per il calcolo invernale ed estivo all'interno dei locali sono i seguenti:

<u> Dettagli - Categoria invernale</u>

Metabolismo energetico (M)	70,00	W/m²
Potenza meccanica efficace (W)	0,00	W/m ²
Temperatura aria interna (θ_a)	20,0	°C
Umidità relativa interna (UR)	50,0	%
Velocità dell'aria (v _a)	0,10	m/s
Isolamento termico dell'abbigliamento (I_{cl})	0,200	m²K/W

<u> Dettagli - Categoria estiva</u>

Metabolismo energetico (M)	70,00	W/m ²
Potenza meccanica efficace (W)	0,00	W/m^2
Temperatura aria interna (θ_a)	26,0	°C
Umidità relativa interna (UR)	50,0	%
Velocità dell'aria (v _a)	0,15	m/s
Isolamento termico dell'abbigliamento (I_{cl})	0,100	m²K/W

<u>Dettagli - Voto medio previsto (PMV) e Percentuale prevista di insoddisfatti (PPD):</u>

Zona	Locale	Descrizione	Verifica	Categoria minima	Categoria invernale	Categoria estiva
1	6	Co-working	Positiva	В	В	Α
1	10	Ufficio	Positiva	В	В	Α

Firmato da:

Ferrara Roberto

codice fiscale FRRRRT85H19G999U num.serie: 46784638803409771559907762718835323967 emesso da: ArubaPEC S.p.A. NG CA 3 valido dal 13/09/2021 al 13/09/2024