Rici	CARDO MARTE	LLI	www.studiogeologic <mark>o.it</mark>			
9	e o lo g	0			•	
1.0	Fabbircato Via Meoni_RGT				Agosto 2016	
REVISIONE	NOME FILE	REDATTO	CONTROLLATO	APPROVATO	DATA	

PROGETTO: REALIZZAZIONE DI UN CONDOMINIO SOLIDALE

IN VIA ARMANDO MEONI A PRATO

RICHIEDENTE: EDILIZIA PUBBLICA PRATESE S.p.A.

PROGETTISTA: DOTT. ING. GIULIA BORDINA

OGGETTO: RELAZIONE GEOTECNICA

ai sensi del D.M. 14.01.2008 e Circ. Min. LL.PP. 02.02.2009 n. 617, L.R. 01/2005, D.G.R. n. 431/2006, DPGR 36/R

Via Aretina, 362 – Loc. Ellera, FIESOLE (FI)

Tel.: +39 55 6594919 Fax: +39 55 6594919 Por. +39 335 6323692

E-mail: martelli@studiogeologico.it

P.e.c.: riccardo.martelli@epap.sicurezzapostale.it

Web: www.studiogeologico.it

P. Iva: 04771480482

Ordine dei Geologi della Toscana n. 913 Albo CTU Tribunale di Firenze n. 8851 Albo Periti Tribunale di Firenze n. 354

INDICE

1. INTRODUZIONE	2
2. MODELLO GEOTECNICO	3
2.1. Caratterizzazione dei terreni di fondazione	3
2.2. Descrizione dell'intervento	5
2.3. Verifica degli stati limite	6
2.3.1. Stato limite ultimo SLU - Verifica delle fondazioni	6
2.3.2. Relazione di calcolo della verifica delle fondazioni	7
2.3.3. Stato limite di esercizio SLE	11
2.3.4. Relazione di calcolo dei cedimenti	12
2.3.5. Verifica alla liquefazione	13
2.3.6. Stabilità del pendio	14
2.3.7. Scavi	14
3. CONCLUSIONI	15

FILE: FABBRICATO_VIA MEONI EPP.RGT

1. Introduzione

Su incarico di Edilizia Pubblica Pratese S.p.A. viene redatta la presente Relazione Tecnica per definire i caratteri geotecnici di un intervento, ubicato in Via A. Meoni a Prato, che prevede la realizzazione di un condominio solidale, secondo il progetto dell'Ing. Giulia Bordina di E.P.P. Spa.

Tale Relazione viene presentata ad espletamento della normativa attualmente vigente per quanto riguarda la redazione di documentazione tecnico-scientifica di supporto alla progettazione edilizia (D.M. 14.01.2008 e sua Circolare Ministeriale Applicativa 02.02.2009 n.617).

Lo studio si basa sui dati ottenuti con un'apposita campagna di indagine geognostica con esecuzione di un sondaggio a carotaggio continuo, analisi di laboratorio geotecnico e di un'indagine sismica Masw. Tali dati sono stati ulteriormente integrati con il rilevamento geologico della zona, la consultazione dei dati geognostici del RUC, della cartografia di P.S. e geologica regionale, nonché della letteratura tecnico-scientifica disponibile per l'area in esame.

2. MODELLO GEOTECNICO

2.1. Caratterizzazione dei terreni di fondazione

La determinazione dei parametri geomeccanici è stata effettuata per via diretta, utilizzando i dati delle prove di laboratorio geotecnico e indiretta, utilizzando i dati della prove SPT in foro:

Livello A (da 0,0 a –2,0 m dal p.c.): al di sotto di un livello decimetrico di materiale pedogenizzato sabbioso e ghiaioso, è presente sabbia limosa di colore marrone, umida, da mediamente addensata ad addensata. I valori di resistenza alla punta rilevati con il pocket penetrometro risultano molto omogenei e compresi fra 3,0 e 4,0 Kg/cm². I valori di resistenza misurati con il vane test sono omogenei e pari a 2,0 Kg/cm². Vista la granulometria del sedimento, considerati i valori puntuali acquisiti sulla carota di sondaggio ed i valori delle prove SPT, si assume un comportamento prevalentemente coesivo a breve termine, con una coesione non drenata c_u pari a 0,2 Kg/cm², ed un comportamento completamente attritivo a lungo termine, con una resistenza al taglio mobilitata da un angolo di attrito interno ϕ ′ non inferiore a 28°. La compressibilità è media con Ed pari a 80 kg/cm². Il peso di volume è pari a 1,90 g/cm³.

Livello B (da –2,0 a –4,2 m): ghiaia da fine a media in matrice sabbiosa con limo e argilla, di colore marrone, mediamente addensata (ghiaia 48,5%, sabbia 27,1%, limo 13,2 %, argilla 11,2 %). Vista la granulometria del sedimento si assume un comportamento prevalentemente attritivo a breve e lungo termine, con una resistenza al taglio mobilitata da un angolo di attrito interno ϕ' non inferiore a 30°. La compressibilità è ridotta con Ed pari a 150 kg/cm². Il peso di volume è pari a 1,95 g/cm³.

Livello C (da -4,2 a -8,5 m): limo argilloso-sabbioso di colore marrone, umido, plastico, mediamente consistente, intercalato da livelli decimetrici di sabbia con ghiaia (5,7-6,0 m dal p.c.). Le prove SPT in foro hanno fornito valori di Nspt compresi fra 9 e 15 colpi. I valori di resistenza alla punta rilevati con il pocket penetrometro risultano molto omogenei e compresi fra 0,5 e 1,0 Kg/cm². I valori di resistenza misurati con il vane test variano da 4,0 a 6,0 Kg/cm². La prova di taglio CD indica una resistenza al taglio a lungo termine mobilitata da un angolo di attrito interno ϕ' pari a 25,9° ed una coesione c' pari a 0,22 Kg/cm². A breve termine la resistenza la taglio è mobilitata da una coesione non drenata c_u pari a 0,5 Kg/cm². La compressibilità è media con Ed pari a 35 kg/cm² nell'intervallo delle tensioni che saranno applicate. Il peso di volume è pari a 2,01 g/cm³.

Livello D (da -8,5 a -9,0 m): ghiaia da fine a media in matrice sabbiosa con limo e argilla, di colore marrone, mediamente addensata. Clasti arenacei poco appiattiti, arrotondati, poco sferici. Vista la granulometria del sedimento e lo stato di addensamento che si osserva in fase di carotaggio, si assume un comportamento prevalentemente attritivo a breve e lungo termine, con una resistenza al taglio mobilitata da un angolo di attrito interno ϕ' non inferiore a 30°. La compressibilità è ridotta con Ed pari a 150 kg/cm². Il peso di volume è pari a 1,95 g/cm³.

Livello E (da -9.0 a -9.5 m): limo argilloso-sabbioso di colore marrone, umido, plastico, molto consistente. La prova SPT in foro ha fornito un valori di Nspt pari a 23 colpi. I valori di resistenza alla punta rilevati con il pocket penetrometro risultano molto omogenei e pari a 0.5 Kg/cm². I valori di resistenza misurati con il vane test son omogenei e pari a 3.0 Kg/cm². A breve termine la resistenza la taglio è mobilitata da una coesione non drenata c_u pari a 0.3 Kg/cm². A lungo termine la resistenza la taglio è mobilitata da un angolo di attrito interno ϕ' pari a 24° . La compressibilità è

media con Ed pari a 50 kg/cm² nell'intervallo delle tensioni che saranno applicate. Il peso di volume è pari a 1,90 g/cm³.

Livello F (da -9,5 a >-10,0 m): ghiaia da fine a media in matrice sabbiosa con limo e argilla, di colore marrone, mediamente addensata. Clasti arenacei poco appiattiti, arrotondati, poco sferici. Vista la granulometria del sedimento e lo stato di addensamento che si osserva in fase di carotaggio, si assume un comportamento prevalentemente attritivo a breve e lungo termine, con una resistenza al taglio mobilitata da un angolo di attrito interno ϕ' non inferiore a 30°. La compressibilità è ridotta con Ed pari a 150 kg/cm². Il peso di volume è pari a 1,95 g/cm³.

All'interno del perforo di indagine è stata rilevata la presenza di acqua alla profondità di -9,5 m dal p.c.. Viene cautelativamente considerata una risalita massima di 0,5, con livello piezometrico a -9,1 m dal p.c..

I valori medi vengono assunti come valori caratteristici (DM 14.01.2008). Per valore caratteristico di un parametro geotecnico deve intendersi una stima ragionata e cautelativa del valore del parametro nello stato limite considerato. I valori di progetto dei parametri geotecnici si ottengono dai valori caratteristici tenendo conto dei coefficienti parziali γ_M .

2.2. Descrizione dell'intervento

L'intervento in oggetto prevede la realizzazione di un fabbricato di civile abitazione di dimensione rettangolare, composto da due piani fuori terra, avente dimensioni in pianta pari a circa $31,0 \times 10,00$ m ed altezza di circa 6,2 m con la porzione centrale alta circa 9,0 m.

Il nuovo fabbricato sarà realizzato in legno ed avrà una fondazione superficiale in c.a., che dovrà superare il primo livello pedogenizzato andando a poggiare alla profondità di circa 1,0 m dal p.c. su terreni sabbioso-limosi addensati, passanti a ghiaie addensate. In profondità prosegue l'alternanza fra livelli di materiale fine limo-argilloso e ghiaia. Tale assetto trova conferma anche nelle indagini del RUC di Prato eseguite sull'altro lato di Via A. Meoni, allegate alla presente relazione.

Per maggiori dettagli si faccia riferimento alle tavole di progetto della Dott.ssa Ing. Giulia Bordina e alle tavole del Progettista delle Strutture.

2.3. Verifica degli stati limite

2.3.1. Stato limite ultimo SLU - Verifica delle fondazioni

Viene assunto come stato limite ultimo lo stato limite di salvaguardia della vita SLV. Si valuta pertanto la tensione di progetto massima che può essere applicata al suolo prima che si instaurino meccanismi di rottura. Il calcolo viene eseguito con un codice di calcolo che verifica la stabilità della fondazione con il metodo di Brinch Hansen è quello riportato negli Ec 7 e Ec 8 e si basa sul principio secondo il quale, affinché una fondazione possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale, per tutte le combinazioni di carico relative allo SLU (stato limite ultimo), deve essere soddisfatta la seguente disuguaglianza:

$$Vd \leq Rd$$

dove Vd è il carico di progetto allo SLU, normale alla base della fondazione, comprendente anche il peso della fondazione stessa; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali , tenendo conto anche dell'effetto di carichi inclinati o eccentrici. Per tener conto degli effetti inerziali indotti dal sisma sulla determinazione

del q_{lim} vengono introdotti i fattori correttivi che tengono conto dell'accelerazione sismica (Ag/g) massima e del coefficiente sismico orizzontale. I parametri dell'azione sismica, così come definiti dalla normativa vigente, sono ripresi dalla Relazione Geologica. In accordo con il Progettista, viene verificata la stabilità di una fondazione unica a platea avente lunghezza L pari a 31,0 m e larghezza B pari a 10,0 m, nello stato limite di salvaguardia della vita SLV con l'approccio 2, combinazione singola. La verifica viene effettuata considerando un piano di appoggio a -1,00 m dal p.c.. La verifica viene effettuata a breve e lungo termine.

2.3.2. Relazione di calcolo della verifica delle fondazioni

VERIFICA A BREVE TERMINE

DATI GENERALI

=======================================	
Azione sismica	NTC 2008
Lat./ Long. [WGS84]	43,8596028976083/11,0807022805883
Larghezza fondazione	10,0 m
Lunghezza fondazione	31,0 m
Profondità piano di posa	1,0 m
Altezza di incastro	1,0 m
Profondità falda	9,1
=======================================	

SISMA

Accelerazione massima (ag/g) 0,166
Effetto sismico secondo NTC(C7.11.5.3.1)
Fattore di struttura [q] 1,01
Periodo fondamentale vibrazione [T] 0,26
Coefficiente intensità sismico terreno [Khk] 0,0399
Coefficiente intensità sismico struttura [Khi] 0,4021

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50,0 [anni]
Vita di riferimento: 50,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: Categoria topografica:

S.L. Stato limite	TR Tempo ritorno [anni]	ag [m/s²]	F0 [-]	TC* [sec]
S.L.O.	30,0	0,48	2,53	0,25
S.L.D.	50,0	0,59	2,56	0,27
S.L.V.	475,0	1,36	2,44	0,3
S.L.C.	975.0	1.76	2.39	0.31

Coefficienti sismici orizzontali e verticali

Opera:

Stabilità dei pendii e Fondazioni

S.L.	amax	beta	kh	kv
Stato limite	[m/s²]	[-]	[-]	[sec]
S.L.O.	0,576	0,2	0,0117	0,0059
S.L.D.	0,708	0,2	0,0144	0,0072
S.L.V.	1,632	0,24	0,0399	0,02
S.L.C.	2,112	0,24	0,0517	0,0258

STRATIGRAFIA TERRENO

Descrizione	Coeff.	Coeff.	Poisson	Modulo	Modulo	Coesione	Coesione	Angolo di	Peso	Peso	Spessore
	consolidazion	consolidaz		Edometric	Elastico	non	[Kg/cm ²]	attrito	unità di	unità di	strato
	e secondaria	. primaria		0	[Kg/cm ²]	drenata		[9]	volume	volume	[m]
		[cmq/s]		[Kg/cm ²]	2 3, 1	[Kg/cm ²]			saturo	[Kg/m³]	
		2- 1/-3		. 3/ - 1		2 3/ - 3			[Kg/m³]	. 3, 3	
sabbia e	0,0	0,0	0,0	80,0	0,0	0,2	0,0	28,0	2000,0	1900,0	2,0
limo		·	•				-				
ghiaia	0,0	0,0	0,0	150,0	0,0	0,0	0,0	30,0	2050,0	1950,0	2,2
sabbiosa		·		·			-	-	•	-	•
argilla	0,0	0,0	0,0	35,0	0,0	0,5	0,22	25,9	2100,0	2010,0	4,3
debolment		•		•			-			-	•
e sabbiosa											
ghiaia	0,0	0,0	0,0	150,0	0,0	0,0	0,0	30,0	2050,0	1950,0	0,5
sabbiosa	,	,	,	,	,	,	,	,	,	,	,
argilla	0,0	0,0	0,0	50,0	0,0	0,5	0,0	24,0	2000,0	1900,0	0,5
debolment	,	,		,		,	· ·	,	•	,	•
e sabbiosa											
ghiaia	0,0	0,0	0,0	150,0	0,0	0,0	0,0	30,0	2050.0	1950,0	0,5
sabbiosa	.,.	,	,,,	,	,			,	,		,

Carichi di progetto agenti sulla fondazione Nome combinazione Pressione normale di My [Kg·m] Hy [Kg] Nr. N Mx Hx Tipo [Kg] [Kg·m] [Kg] progetto [Kg/cm²] 0,00 0,00 0,00 0,00 0,00 0,00 A1+M1+R3 0,80 0,00 0,00 0,00 Progetto 0,00 0,00 Sisma S.L.E. S.L.D. 0,80 Progetto Servizio 0,00 0,61 0,00 0,00 0,00 0,00 0,00 Servizio

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzione Sismica	Tangente angolo di resistenza al taglio	Coesione efficace	Coesione non drenata	Peso Unità volume in fondazione	Peso unità volume copertura	Coef. Rid. Capacità portante verticale	Coef.Rid.Capacit à portante orizzontale
1	No	1	1	1	1	1	2,3	1,1
2	Si	1	1	1	1	1	2,3	1,1
3	No	1	1	1	1	1	1	1
4	No	1	1	1	1	1	1	1

CARICO LIMITE FONDAZIONE COMBINAZIONE...A1+M1+R3

Autore: Brinch - Hansen 1970 Carico limite [Qult] Resistenza di progetto[Rd] 1,84 Kg/cm² 0,8 Kg/cm² 0,8 Kg/cm² Tensione [Ed] Fattore sicurezza [Fs=Qult/Ed] 2,3 Verificata Condizione di verifica [Ed<=Rd]

A1+M1+R3

Autore: Brinch - Hansen 1970 (Condizione non drenata)

Fattore [Nq]	1,0
Fattore [Nc]	5,14
Fattore [Ng]	0,0
Fattore forma [Sc]	1,06
Fattore profondità [Dc]	1,0
Fattore inclinazione carichi [Ic]	1,0
Fattore inclinazione pendio [Gc]	1,0
Fattore inclinazione base [Bc]	1,0
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0

1,84 Kg/cm² 0,8 Kg/cm² Carico limite Resistenza di progetto Condizione di verifica [Ed<=Rd] Verificata

Sisma

Autore: Brinch - Hansen 1970 (Condizione non drenata)

_____ Fattore [Nq] 1,0 5,14 0,0 Fattore [Nc] Fattore [Ng]

```
Fattore forma [Sc]
Fattore profondità [Dc]
Fattore inclinazione carichi [Ic]
                                                                                                    1,0
                                                                                                     1,0
Fattore inclinazione pendio [Gc]
                                                                                                    1.0
Fattore inclinazione base [Bc]
Fattore correzione sismico inerziale [zq]
Fattore correzione sismico inerziale [zg]
                                                                                                    1,0
                                                                                                    1,0
Fattore correzione sismico inerziale [zc]
                                                                                                    1,0
                                                                                                  ========
Carico limite
                                                                                                  1,84 Kg/cm<sup>2</sup>
Resistenza di progetto
Condizione di verifica [Ed<=Rd]
                                                                                                    0,8 Kg/cm<sup>2</sup>
                                                                                           Verificata
```

Lo stato limite di salvaguardia della vita SLV viene verificato a breve termine con una tensione di progetto minore o uguale a 0,80 Kg/cm².

VERIFICA A LUNGO TERMINE

DATI GENERALI

NTC 2008 Azione sismica Lat./ Long. [WGS84] 43,8596028976083/11,0807022805883 Larghezza fondazione 10.0 m Lunghezza fondazione 1,0 m 1,0 m Profondità piano di posa Altezza di incastro Profondità falda

SISMA

Accelerazione massima (ag/g) 0.166 Effetto sismico secondo NTC(C7.11.5.3.1) Fattore di struttura [q] Periodo fondamentale vibrazione [T] 1,01 0,26 Coefficiente intensità sismico terreno [Khk] Coefficiente intensità sismico struttura [Khi] 0,0399

0.4021

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: Classe d'uso: 2 - Opere ordinarie Classe II Vita nominale: 50,0 [anni] Vita di riferimento: 50,0 [anni]

Parametri sismici su sito di riferimento Categoria sottosuolo: Categoria topografica: В Т1

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	[m/s ²]	[-]	[sec]
	[anni]			
S.L.O.	30,0	0,48	2,53	0,25
S.L.D.	50,0	0,59	2,56	0,27
S.L.V.	475,0	1,36	2,44	0,3
SIC	975.0	1 76	2 39	0.31

Coefficienti sismici orizzontali e verticali

Stabilità dei pendii e Fondazioni Opera:

S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	0,576	0,2	0,0117	0,0059
S.L.D.	0,708	0,2	0,0144	0,0072
S.L.V.	1,632	0,24	0,0399	0,02
SIC	2 112	0.24	0.0517	0.0258

STRATIGRAFIA TERRENO

Spessore	Peso	Peso	Angolo di	Coesione	Coesione	Modulo	Modulo	Poisson	Coeff.	Coeff.	Descrizione
Spessore	F C30	F C30	Aligolo ul	Coesione	Coesione	Modulo	Modulo	F 0133011	Coen.	Coeii.	Descrizione
strato	unità di	unità di	attrito	[Ka/cm ²]	non	Elastico	Edometric		consolidaz	consolidazion	

Realizzazione di un fabbricato di civile abitazione in Via A. Meoni, Prato - Relazione geotecnica	9
---	---

[m]	volume	volume	[°]		drenata	[Kg/cm ²]	0		. primaria	e secondaria	
	[Kg/m³]	saturo			[Kg/cm ²]		[Kg/cm ²]		[cmq/s]		
		[Kg/m³]									
2,0	1900,0	2000,0	28,0	0,0	0,3	0,0	80,0	0,0	0,0	0,0	sabbia e
											limo
2,2	1950,0	2050,0	30,0	0,0	0,0	0,0	150,0	0,0	0,0	0,0	ghiaia
											sabbiosa
4,3	2010,0	2100,0	25,9	0,22	0,5	0,0	35,0	0,0	0,0	0,0	argilla
											debolment
											e sabbiosa
0,5	1950,0	2050,0	30,0	0,0	0,0	0,0	150,0	0,0	0,0	0,0	ghiaia
											sabbiosa
0,5	1900,0	2000,0	24,0	0,0	0,5	0,0	50,0	0,0	0,0	0,0	argilla
											debolment
											e sabbiosa
0,5	1950,0	2050,0	30,0	0,0	0,0	0,0	150,0	0,0	0,0	0,0	ghiaia
											sabbiosa

Carichi di progetto agenti sulla fondazione

Nr.	Nome	Pressione	N	Mx	My	Hx	Ну	Tipo			
	combinazione	normale di progetto [Kg/cm²]	[Kg]	[Kg·m]	[Kg·m]	[Kg]	[Kg]				
1	A1+M1+R3	7,95	0,00	0,00	0,00	0,00	0,00	Progetto			
2	Sisma	3,76	0,00	0,00	0,00	0,00	0,00	Progetto			
3	S.L.E.	2,88	0,00	0,00	0,00	0,00	0,00	Servizio			
4	S.L.D.	2,88	0,00	0,00	0,00	0,00	0,00	Servizio			

Sisma + Coeff, parziali parametri geotecnici terreno + Resistenze

Sistila i Cociii	Sistila i Cocii: parziali paralifetti geotecilici terreno i Resistenze											
Nr	Correzione Sismica	Tangente angolo di resistenza al taglio	Coesione efficace	Coesione non drenata	Peso Unità volume in fondazione	Peso unità volume copertura	Coef. Rid. Capacità portante verticale	Coef.Rid.Capacit à portante orizzontale				
1	No	1	1	1	1	1	2,3	1,1				
2	Si	1	1	1	1	1	2,3	1,1				
3	No	1	1	1	1	1	1	1				
4	No	1	1	1	1	1	1	1				

CARICO LIMITE FONDAZIONE COMBINAZIONE...Sisma

Carico limite ForbAzione V Autore: Brinch - Hansen 1970 Carico limite [Qult] Resistenza di progetto[Rd] Tensione [Ed] 8,65 Kg/cm² 3,76 Kg/cm² 3,76 Kg/cm² 2,3 Fattore sicurezza [Fs=Qult/Ed] Condizione di verifica [Ed<=Rd] Verificata

A1+M1+R3

Autore: Brinch - Hansen 1970 (Condizione drenata)

Fattore [Nq]	13,8
Fattore [Nc]	24,68
Fattore [Ng]	13,27
Fattore forma [Sc]	1,16
Fattore profondità [Dc]	1,03
Fattore inclinazione carichi [Ic]	1,0
Fattore inclinazione pendio [Gc]	1,0
Fattore inclinazione base [Bc]	1,0
Fattore forma [Sq]	1,15
Fattore profondità [Dq]	1,03
Fattore inclinazione carichi [Iq]	1,0
Fattore inclinazione pendio [Gq]	1,0
Fattore inclinazione base [Bq]	1,0
Fattore forma [Sg]	0,9
Fattore profondità [Dg]	1,0
Fattore inclinazione carichi [Ig]	1,0
Fattore inclinazione pendio [Gg]	1,0
Fattore inclinazione base [Bg]	1,0
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0
Carico limite	18,29 Kg/cm ²

Resistenza di progetto Condizione di verifica [Ed<=Rd] 7,95 Kg/cm² Verificata

Autore: Brinch - Hansen 1970 (Condizione drenata)

Fattore [Nq]
Fattore [Ng]
Fattore [Ng]
Fattore forma [Sc]
Fattore profondità [Dc] 13,8 13,8 24,68 13,27 1,16 1,03

Fattore inclinazione carichi [Ic] Fattore inclinazione pendio [Gc]	1,0 1,0
Fattore inclinazione base [Bc]	1,0
Fattore forma [Sq]	1,15
Fattore profondità [Dq]	1,03
Fattore inclinazione carichi [Iq]	1,0
Fattore inclinazione pendio [Gq]	1,0
Fattore inclinazione base [Bq]	1,0
Fattore forma [Sg]	0,9
Fattore profondità [Dg]	1,0
Fattore inclinazione carichi [Ig]	1,0
Fattore inclinazione pendio [Gg]	1,0
Fattore inclinazione base [Bg]	1,0
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	0,18
Fattore correzione sismico inerziale [zc]	1,0
=======================================	
Carico limite	8,65 Kg/cm ²
Resistenza di progetto	3,76 Kg/cm ²
Condizione di verifica [Ed<=Rd]	Verificata

Lo stato limite di salvaguardia della vita SLV viene verificato a breve termine con una tensione di progetto minore o uguale a 3,76 Kg/cm².

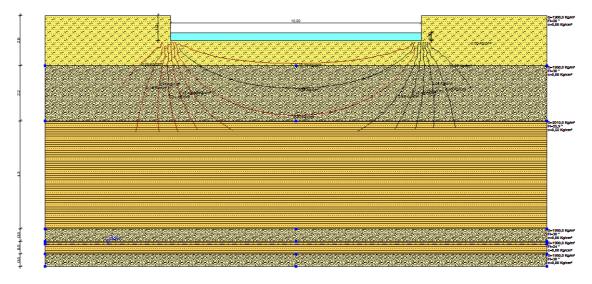


Fig. 1

2.3.3. Stato limite di esercizio SLE

Viene assunto come stato limite di esercizio, lo stato limite di danno SLD, con il quale la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua

funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

Per questo, si stabilisce che la massima distorsione angolare fra due punti $(\Delta S/L)$ non deve eccedere il valore di 1/500 per non avere lesioni murarie.

Per l'intervento si considera come ammissibile un cedimento differenziale inferiore o uguale a 1,00 cm fra il centro della platea e la metà del lato lungo della stessa, ma con cedimento assoluto massimo non superiore a 2,54 cm.

I cedimenti vengono calcolati adottando l'approccio edometrico, che consente di valutare un cedimento di consolidazione di tipo monodimensionale, prodotto dalle tensioni indotte da un carico applicato in condizioni di espansione laterale impedita. Il calcolo viene effettuato considerano un terreno naturale non precaricato, al fine di ottenere una stima in favore di sicurezza.

2.3.4. Relazione di calcolo dei cedimenti

Cedimento edometrico calcolato al centro della platea con il metodo logaritmico di Terzaghi

Pressione normale di progetto Cedimento dopo T anni Distanza 0,00 Angolo Cedimento totale 0,42 Kg/cm² 15,0 m 0,00 ° 2,522 cm

Z: Profondità media dello strato; Dp: Incremento di tensione; Wc: Cedimento consolidazione; Ws:Cedimento secondario; Wt: Cedimento totale.

Strato	Z	Tensione	Dp	Metodo	Wc	Ws	Wt
	(m)	(Kg/cm ²)	(Kg/cm ²)		(cm)	(cm)	(cm)
1	1,5	0,285	0,221	Edometrico	0,2764		0,2764
2	3,1	0,595	0,193	Edometrico	0,2836		0,2836
3	6,35	1,241	0,145	Edometrico	1,7754		1,7754
4	8,75	1,722	0,117	Edometrico	0,0389		0,0389
5	9,25	1,805	0,112	Edometrico	0,1119		0,1119
6	9,75	1,856	0,107	Edometrico	0,0358	1	0,0358

Cedimento edometrico calcolato a metà del lato lungo della platea con il metodo logaritmico di Terzaghi

Pressione normale di progetto Cedimento dopo T anni 0,42 Kg/cm² 15,0

Distanza 5,00 Angolo Cedimento totale

m 0,00 ° 1,513 cm

Z: Profondità media dello strato; Dp: Incremento di tensione; Wc: Cedimento consolidazione; Ws:Cedimento secondario; Wt: Cedimento totale.

Strato	Z	Tensione	Dp	Metodo	Wc	Ws	Wt
	(m)	(Kg/cm ²)	(Kg/cm ²)		(cm)	(cm)	(cm)
1	1,5	0,285	0,112	Edometrico	0,1406		0,1406
2	3,1	0,595	0,104	Edometrico	0,1532		0,1532
3	6,35	1,241	0,089	Edometrico	1,092		1,092
4	8,75	1,722	0,078	Edometrico	0,0261		0,0261
5	9,25	1,805	0,076	Edometrico	0,0762		0,0762
6	9,75	1,856	0,074	Edometrico	0,0247		0,0247

Con una tensione pari a 0,42 Kg/cm² il cedimento assoluto risulta inferiore a 2,54 cm ed il cedimento differenziale risulta pari a 1,00 cm, con una distorsione angolare uguale a 1/500, verificando lo SLE.

2.3.5. Verifica alla liquefazione

La resistenza del deposito alla liquefazione viene valutata in termini di fattore di resistenza alla liquefazione:

$$F_S = \frac{CRR}{CSR}$$

Per la determinazione del valore di CRR (resistenza del terreno agli sforzi di taglio ciclico, R nella tabella di calcolo) e del valore di CSR (sollecitazione di taglio massima indotta dal sisma, T nella tabella di calcolo) è stato adottato il metodo di Seed e Idriss che richiede la conoscenza di pochi parametri geotecnici come la granulometria, la densità relativa, il peso di volume e la resistenza penetrometrica. La verifica a liquefazione dà risultato nei casi di presenza di terreno incoerente, di strato sotto falda, di strato avente spessore dello strato >1m e di presenza di sisma. La liquefazione di un deposito sabbioso sotto falda è assente se:

- a) il valore di Nspt' (corretto-normalizzato) è > 25 con contenuto fine assente.
- b) il valore di Nspt' (corretto-normalizzato) è > 20 con contenuto fine > 10 %.
- c) Lo strato saturo si trova a profondità > 15 mt. dal p.c..
- d) Il contenuto in fine argilloso (CF %) > 20 %.
- e) L'indice plastico è > 10.
- f) L'accelerazione max. al suolo è < 0,15 g.
- g) Gli strati sabbiosi non sono estesi e spessi.

Nel caso in esame, al di sotto delle strutture di fondazione sono presenti strati coesivi o incoerenti addensati. La falda è presente dalla profondità di – 9,1 m dal p.c.

VERIFICA A LIQUEFAZIONE - Metodo del C.N.R. - GNDT Da Seed e Idriss

Svo: Pressione totale di confinamento; S'vo: Pressione efficace di confinamento; T: Tensione tangenziale ciclica; R: Resistenza terreno alla liquefazione: Fe: Coefficiente di cicurazza

alia liquerazione, FS. Coemiciente di Sicurezza										
Strato	Prof. Strato	Nspt	Nspt'	Svo	S'vo	T	R	Fs	Condizione:	
	(m)			(Kg/cm ²)	(Kg/cm ²)					
1	2,00	15,00	23,611	0,380	0,380	0,105	1,579	15,09	Livello non	
									liquefacibile	
2	4,20	25,00	28,165	0,809	0,809	0,101	4,122	40,77	Livello non	
									liquefacibile	
3	8,50	14,00	10,028	1,673	1,673	0,094	0,245	2,60	Livello non	
									liquefacibile	
4	9,00	30,00	20,641	1,771	1,771	0,093	0,324	3,47	Livello non	
									liquefacibile	
5	9,50	23,00	15,456	1,870	1,830	0,095	0,181	1,92	Livello non	
									liquefacibile	
6	10,00	30,00	19,750	1,972	1,882	0,096	0,284	2,95	Livello non	
	,	*	-					,	liquefacibile	

2.3.6. Stabilità del pendio

Il lotto si trova in un'area completamente pianeggiante, lontana da brusche variazioni di pendio e pertanto viene omesso qualunque tipo di trattazione numerica.

2.3.7. Scavi

Per la realizzazione dei manufatti saranno realizzati scavi per un'altezza di 1,0 m e per questo non si rilevano rischi per persone o cose.

14

3. CONCLUSIONI

Su incarico di Edilizia Pubblica Pratese S.p.A. è stata redatta la presente Relazione Tecnica per definire i caratteri geotecnici di un intervento, ubicato in Via A. Meoni a Prato, che prevede la realizzazione di un condominio solidale, secondo il progetto dell'Ing. Giulia Bordina di E.P.P. Spa.

Lo studio si è basato sui dati ottenuti con un'apposita campagna di indagine geognostica con esecuzione di un sondaggio a carotaggio continuo e indagine Masw. Il lotto vede la presenza di terreni alluvionali sabbiosi passanti a ghiaiosi e successivamente ad uno spesso livello di argilla limosa. La falda è stata assunta alla profondità di -9,1 m dal p.c.. I parametri dell'azione sismica, così come definiti dalla normativa vigente, sono riportati dalla Relazione Geologica. Le verifiche eseguite sono state effettuate sulla base della configurazione di progetto che vede la presenza di una fondazione unica a platea, per la quale lo stato limite di salvaguardia della vita è verificato a breve termine con una tensione di progetto minore o uguale a 0,80 Kg/cm². A lungo termine lo stato limite di salvaguardia della vita è verificato con una tensione di progetto minore o uguale a 3,76 Kg/cm². Lo SLE viene verificato con una tensione di progetto minore o uguale a 0,42 Kg/cm². Sono stati valutati gli effetti indotti dal fenomeno della liquefazione, escludendo un loro possibile innesco data la presenza di terreni coesivi o granulari addensati.

L'esecuzione degli scavi, per la loro modesta profondità, non determinerà rischi per persone o cose.

Fiesole, Agosto 2016

Dott. Geol. Riccardo Martelli